首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anatase TiO2 nanoribbons/nanotubes (TiO2-NRTs) have been synthesised successfully via a reflux method followed by drying in a vacuum oven, and then, silver-coated TiO2 NRTs (Ag/TiO2-NRTs) were prepared by coating silver particles onto the TiO2-NRTs surface by the traditional silver mirror reaction. The physical properties of the synthesised products were examined in detail using X-ray diffraction, field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy, respectively. The results indicated that the Ag nanoparticles were uniformly deposited on the surface of the TiO2 nanoribbons/nanotubes. The electrochemical properties were investigated by a variety of techniques. The rate capability and cycle durability for the Ag/TiO2-NRTs were improved compared with TiO2-NRTs. It is speculated that the Ag-coated TiO2 nanoribbons/nanotubes are an effective anode candidate for lithium ion batteries.  相似文献   

2.
Surface structures and electronic properties of hypophosphite H2PO2^- on Ni(111) and Ag(111) surfaces were investigated by means of density functional theory at B3LYP/6-31 + +G(d,p) level. The most stable structure was that in which the H2PO2^- adsorbs with its two P--O bonds faced to the substrate surface. The results of the Mulliken population analysis showed that because of the subtle difference of electron configuration, the adsorption energy was larger on the Ni surface than on the Ag surface, and the amounts of both donation and back donation were larger on the Ni(111) surface than on the Ag(111) surface. There were more negative Mulliken charge transfer from H2PO2^- to substrate clusters on Ni surface than on Ag surface and more positive Mulliken charges on P atom in Ni4H2PO2^- than in Ag4H2PO2^-, which means that P atom in Ni4H2PO2^- is easily attacked by a nucleophile such as OH . Thus, H2PO2^- is more easily oxidated on Ni(111) surface than on Ag(111) suface. These results indicated that the silver surface is inactive for the oxidation reaction of the hypophosphite anion.  相似文献   

3.
The kinetics of oxidation of pyrrolidine by bis(hydrogenperiodato)argentate(III) complex anion ([Ag(HIO6)2]5?) was studied in alkaline medium, with reaction temperatures in the range of 15.0–30.0 °C. The experiments indicated that the oxidation follows an overall second-order reaction, being first-order in both Ag(III) and pyrrolidine. The observed second-order rate constants, k′, decreased with increasing [IO4 ?] but increased slightly with increasing [OH?]. The influence of ionic strength on the reaction rate was also investigated. The oxidation resulted in oxidative deamination of pyrrolidine, giving 4-hydroxybutyrate as the product. A reaction mechanism is proposed which includes an equilibrium between [Ag(HIO6)2]5? and [Ag(HIO6)2(OH)(H2O)]2?; these two Ag(III) species are reduced by pyrrolidine in parallel rate-determining steps. The rate equation derived from the proposed mechanism can explain the experimental observations. The rate constants of the rate-determining steps, together with the associated activation parameters, were calculated accordingly.  相似文献   

4.
采用银修饰介孔磷钨酸/二氧化硅(mesoporous HPW/SiO2)催化剂,并研究了其在模拟柴油和真实柴油氧化脱硫反应中的催化性能。通过银修饰介孔HPW/SiO2,结合银离子对有机硫化物的选择吸附性和HPW对有机硫化物的催化氧化活性,以达到选择氧化脱硫的目的。模拟柴油分别采用石油醚、苯、1-辛烯和二苯并噻吩配制,当银离子与HPW的摩尔比为2时,催化剂具有最高的选择催化氧化活性。采用N2 吸附-脱附、XRD、UV-vis和EDS表征了银修饰的介孔HPW/SiO2催化剂,结果表明,银物种分散均匀且以Ag+形式存在。真实柴油的脱硫研究表明,相比介孔HPW/SiO2催化剂,修饰的催化剂介孔Ag2-HPW/SiO2脱硫率提高了4.6%,初始硫含量为1800×10-6的直馏柴油能被脱除至228×10-6,脱硫率为87.3%。介孔Ag2-HPW/SiO2催化剂具有良好的再生性能,经再生处理后,Ag的损失量极少,其三次脱硫率达到84.8%。  相似文献   

5.
Hydrogenolysis of glycerol to 1,2-propanediol and 1,3-propanediol has significant scientific importance and commercial interest due to the huge surplus of glycerol and the various application of propanediols. A series of supported Ag–Cu catalysts synthesized by impregnation method were studied for hydrogenolysis of glycerol to propanediols. The catalysts were characterized by H2-TPR, NH3-TPD, XRD, BET, N2O chemisorption, TG, ICP and SEM. It was observed that the loading of 5% Ag–Cu-based catalysts facilitated the reduction, surface acidity and dispersion of the Cu particles, which improved the conversion of glycerol and promoted the generation of propanediols. It was also found that when loading Ag and Cu simultaneously on Al2O3, the catalyst had a better performance for the reaction because of the higher acidity, dispersion and surface area of the Cu species on the catalyst surface. In addition, effects of metal concentrations, metal impregnation sequence, reaction temperature, reaction pressure, reaction time, solvent and pH value of the solution on glycerol hydrogenolysis together with the recyclability of catalyst were investigated in detail. The optimal 5Ag–15Cu/Al2O3 achieved 66.4% glycerol conversion with 68.2% 1,2-propanediol and 3.1% 1,3-propanediol selectivity at 200 °C under 3.5 MPa in ethanol for 8 h.  相似文献   

6.
Silver(I) salts of weakly coordinating anions (WCA) are commonly applied as oxidizing agents or halide abstracting reagents. The feasibility of a particular silver salt for such applications strongly depends on the “nakedness“ of the silver cation. In this study the reactivity of Ag[Me3NB12Cl11] in different solvents was investigated. Crystal structures of a variety of complexes were obtained. In several crystal structures two boron clusters are bridged by Ag–Cl contacts. This leads to polymeric structures (e.g. for Ag[Me3NB12Cl11]·0.5CH2Cl2 and Ag[Me3NB12Cl11]·SO2). Sterically demanding aromatics like mesitylene, pyrene, and acenaphthene are η1‐ or η2‐bonded to the silver atom and also form coordination polymers, whereas benzene as a ligand leads to a molecular structure, in which two benzene molecules are η2‐coordinated to the silver cation. In contrast, strong σ donor ligands like pyridine and triphenylphosphine give homoleptic silver complexes and thus cation and anion are separated. Furthermore, the ability of Ag[Me3NB12Cl11] for performing metathesis reactions was investigated. The reaction with AuICl gave the [Au(NCMe)2]+ cation.  相似文献   

7.
A physical mixture of polymer‐protected Ag nanoparticles and Rh, Pd, or Pt nanoparticles spontaneously forms Ag‐core bimetallic nanoparticles. The formed nanoparticles were smaller than the parent Ag nanoparticles. In the initial process of this reaction, the surface plasmon absorption of Ag nanoparticles diminished and then almost ceased within one hour. Within several minutes, the decrease in Ag surface plasmon absorption could be analyzed by second‐order reaction. This reaction was accelerated with an increase of temperature and the energy gap in the Fermi level between Ag and the other metals. The activation energy (Ea) of this reaction could be determined. An electron transfer reaction from Ag to other metal nanoparticles was proposed as the initial interaction between these metal nanoparticles because the Fermi level of Ag is relatively high, and the electron transfer is possible in terms of energy. The Marcus plot between the rate constant and the driving force, roughly estimated from the work function of metals, and the observed Ea values reasonably explained the proposed electron transfer mechanism.  相似文献   

8.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) hollow fibers were fabricated using a phase inversion/sintering method. As oxygen permeation of BSCF hollow fibers is controlled by the rate surface exchange kinetics, catalytic Ag particles were coated on both inner and outer surfaces using chemical deposition method, as verified by SEM and EDX. The Ag coated BSCF membranes showed up to 100% increase in oxygen permeation at 700 °C, and improvements lower than 10% were measured at 950 °C as compared with unmodified membranes. It was found that Ag catalyst surface loading was non-homogenous and concentrated on the perovskite grain boundaries. As a result, lighter Ag surface loading delivered improved oxygen flux while oxygen flux reached a maximum even though in the presence of excess catalyst loading. The catalytic activity of Ag was beneficial in enhancing surface reaction kinetics up to 850 °C attributed to the spillover effect. Above this temperature, the increase in oxygen permeation rate was marginally diminished due to the reduction of the spillover effect.  相似文献   

9.
The strategy of structurally integrating noble metal and metal oxides is expected to offer exceptional opportunities toward emerging functions of all. We report the creation of an efficient hetero-structured nanocatalyst consisting of Mn3O4 core, SiO2 shell impregnated with noble Ag nanoparticles. The triple nanocatalyst Mn3O4/Ag/SiO2 was synthesized by using a facile three-step approach to disperse Ag nanoparticles between the surfaces of functionalized Mn3O4 and SiO2. The physicochemical structural characterization was performed by XRD and FTIR. The surface morphologies were observed by SEM and TEM. The EDX measurements confirmed the composition of the composite. The nanocomposite has been used as a catalyst for the degradation of Direct blue 78 in the presence of sodium borohydride (NaBH4). It has a drastic catalytic effect as compared to Mn3O4/Ag and Mn3O4. The rate constant of Direct blue 78 reduction followed the order: Mn3O4/Ag/SiO2 (0.25166 min−1) > Mn3O4/Ag (0.07971 min−1) > Mn3O4 (0.00947 min−1). The effects of different reaction conditions of the catalytic reaction have been determined. The catalytic activity of the as- synthesized nanocomposite was examined for the binary dyes system by incorporation of an additional dye (Sunset yellow). Its influence on the degradation rate and efficiency of Direct blue 78 was investigated. The nanocatalyst exhibited excellent catalytic activity towards the complete degradation of both the Direct blue 78 and Sunset yellow. The degradation percentage for these dyes reached 99.33 and 94.68%, respectively. The recovery and reusability of the Mn3O4/Ag/SiO2 nanocomposite was studied in the reduction reaction of Direct blue 78. Five consecutive recovery reaction cycles were performed. They revealed high stability and constant efficiency of the catalyst for four cycles.  相似文献   

10.
In the presence of Et3N, the reaction of 1, 3‐bis[(2‐chloro)benzene]triazene (HL) with CuCl or AgNO3 gives the triazenide complexes {Cu2(L)2} ( 1 ) and {Ag2(L)2} ( 2 ), respectively. The X‐ray crystal structures of both complexes were obtained. The metal–metal distances (Cu ··· Cu and Ag ··· Ag) are 2.4974(5) and 2.7208(5) Å, respectively.  相似文献   

11.
The morphology and surface roughness of silver (Ag) deposit formed on metallic copper (Cu) by cementation conducted in a 0.5M H2SO4 solution was investigated at various temperatures above 25°. The influence of the presence or absence of oxygen (O2) on Ag morphology was studied at an initial Ag+ concentration of 20 mg/dm3. An analysis of distribution diagrams of the surface height calculated from scanning‐electron‐microscope (SEM) top‐view images was performed. The cementation reaction results in a non‐homogeneous Ag deposit formed on the surface independently of the presence or absence of O2 in solution. The Ag deposit covers Cu mainly with a uniform and compact layer with separated germs of predendrites, but also a huge ‘fern‐leaf‐shaped’ and ‘lycopodium‐twigs‐shaped’ dendrites appear occasionally on the surface. The presence of O2 in the system and temperature do not affect significantly the morphology of Ag dendrite as well as a deposit formed on the smooth part of the surface. The roughness of surface with Ag cement varies with temperature only under aerobic conditions where the enhanced Cu corrosion increases the size of anodic sites. The results obtained from the surface‐height‐distribution diagrams constructed for anaerobic conditions showed that the reaction between Cu+ and Ag+ does not start in the bulk of the solution even at the highest studied temperature.  相似文献   

12.
《中国化学快报》2023,34(11):108191
Silver selenide thin film is one of the best candidates for thermoelectric devices. In the previous report, we demonstrated that high-performanced [201] oriented β-Ag2Se thin films can be prepared by direct metal surface element reaction (DMSER) solution selenization in a really short time at room temperature. However, the underlying mechanism of the fast reaction process were not discussed in depth. Herein, based on hard soft acid base (HASB) theory and strong oxidation, we further explored the possible reaction mechanism of the in-situ growth of β-Ag2Se thin films as the function of the reaction time. The time-dependent experimental results showed that the formation of the β-Ag2Se on elemental Ag precursor (∼690 nm thick) in Se/Na2S precursor solution is in a growth driven mode with no obvious orientation or growth rate selections to the elemental Ag precursors. Our investigations provide a prerequisite for the further preparation of thermoelectric materials with excellent properties.  相似文献   

13.
邓辉  蒋新 《无机化学学报》2011,27(1):119-124
利用吸附法原位制备CuO/SiO2、CuO-Ag/SiO2纳米复合物,研究了不同吸附质体系中预负载的纳米Ag粒子对CuO的影响。结果表明:Ag粒子对CuO的影响因吸附质的不同而不同。以Cu(Ac)2为吸附质,纳米Ag几乎没有影响;以NaOH为吸附质,纳米Ag使得CuO的晶粒粒径增大。这一结果与铜物种对Ag晶粒粒径的影响规律完全不同。通过比较不同吸附质的吸附行为,Cu(OH)2与硅胶表面的相互作用被认为是导致这一现象的原因。  相似文献   

14.
Various intermetallic phases composed of Pt/Ag supported on SiO2-gel were synthesized by reduction of Pt(allyl)2 and Ag[cyclooctadiene]2+ precursors anchored on the support surface. This method afforded highly dispersed metallic particles. X-ray analysis was used to ascertain the occurrence of alloy, for structural identification of Pt/Ag phases and degree of dispersion. The catalytic activity of these systems was studied in gas-phase hydrogenation of propene within the temperature range 10–90 °C. Kinetic parameters such as specific reaction rates, reaction orders and apparent activation energies were calculated as functions of the Pt/Ag ratio. Results are compared and discussed in terms of the structural and electronic features of the active metallic phase.  相似文献   

15.
The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k(T) = 2.1 × 1017exp(?56575.98/T), k(T) = 2.1 × 1017exp(?57587.45/T), and k(T) = 3.3 × 1016exp(?57594.79/T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k(T) = 2 × 1018exp(?59343.48.18/T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.  相似文献   

16.
The activation of propene in selective catalytic reduction (SCR) of NO on 4% Ag/Al2O3 has been studied by in situ infrared (IR) spectroscopy. Distinctive propene activation products were detected in the SCR of NO, depending on the nature of surface oxygen and nitrogen oxide species on Ag/Al2O3. C3H6 was oxidized to acetate species in an O2 + C3H6 atmosphere on Ag/Al2O3 above 573 K. The addition of NO to the C3H6 + O2 feed gas suppressed the formation of acetate species but increased the proportion of acrylate species. Acrylate species were further confirmed to be formed preferentially from C3H6 oxidation without the O2 atmosphere on Ag/Al2O3 or nitrate-adsorbed Ag/Al2O3. On the other hand, adsorption of NO led to the formation of nitrito species on Ag/Al2O3, but the nitrito was barely oxidized to nitrate species unless there was an O2 atmosphere at 473–673 K. Thus, the oxidation of propene to acetate species, or the formation of nitrate from nitrito, is attributed to two competitive electrophilic reactions. The formation of nitrate from nitrito species decreased electrophilic oxygen species that oxidized propene to acetate. Nevertheless, the first dehydrogenation of propene to form acrylate species on nitrate-adsorbed Ag/Al2O3 is a nucleophilic reaction, as it is on Ag/Al2O3. Furthermore, there was no decrease in reaction activity for formation of acrylate species on nitrate-adsorbed Ag/Al2O3 compared to Ag/Al2O3. This led to the total reaction occurring easily through the propene nucleophilic oxidation branch because the presence of the adsorbed nitrogen oxides changed selectively the formation rates of the surface reductants. IR spectra data further demonstrate that acrylate and acetate species, as the surface reductants, reacted with nitrate to generate isocyanate intermediates in the SCR of NO. The effect of structures of different reductants on NO reduction is discussed.  相似文献   

17.
The catalysts of silver supported on mesoporous silica modified with Co3O4, CeO2, and ZrO2 were prepared by an impregnation method; characterized by X-ray diffraction analysis, temperature-programmed reduction, and low-temperature nitrogen adsorption; and studied in a model reaction of CO oxidation. It was found that the Ag/SiO2 system exhibited high activity in the reaction of CO oxidation, and the addition of transition metal oxides led to reduction of the temperature of 50% CO conversion by 40°C. The modification of Ag/SiO2 with cerium dioxide was found most effective because of the interaction of silver particles and CeO2 on the surface of silica gel.  相似文献   

18.
何霏  马芳  李涛  李光兴 《催化学报》2013,34(12):2263-2270
采用三种不同的氮源溶剂热合成了锐钛矿-板钛矿混晶的N-TiO2催化剂.采用X射线衍射、N2吸附-脱附、X射线光电子能谱和透射电子显微镜等手段对催化剂进行了表征.重点研究了不同氮源对催化剂的相组成、晶粒尺寸、微观结构以及比表面积的影响.采用紫外光降解气相苯测试了合成材料的催化活性.结果表明,以水合肼为氮源合成的N-TiO2表现出最优的光催化活性,其活性明显高于P25,且能够循环使用15次以上.采用气相色谱-质谱技术分析了光降解过程的中间产物,基于此提出了相应的降解机理.  相似文献   

19.
Pd-catalyzed oxidative C-H/C-H coupling reaction is an emerging type of C-H acti-vation reaction, which attracts great interests because both reaction partners do not re-quire pre-functionalization. In the present study, we employed DFT methods to investigatethe mechanism of Pd(OAc)2-catalyzed oxidative C-H/C-H coupling of pentafluoroben-zene with benzene. Four possible pathways were examined in the C-H activation part: path A benzene-pentafluorobenzene mechanism (C-H activation of benzene occurs before the C-H activation of pentafluorobenzene), path B pentafluorobenzene-benzene mechanism (C-H activation of benzene occurs after the C-H activation of pentafluorobenzene), path C benzene-pentafluorophenylsilver mechanism (C-H activation of benzene and subsequenttransmetalation with pentafluorophenyl silver complex), path D pentafluorophenylsilver-benzene mechanism (transmetalation with pentafluorophenyl silver complex and subsequent C-H activation of benzene). Based on the calculations, the sequences of two C-H activation steps are found to be different in the oxidative couplings of same substrates (i.e. pentaflu-orobenzene and benzene) in different catalytic systems, where the additive Ag salts played a determinant role. In the absence of Ag salts, the energetically favored pathway is path B (i.e. the C-H activation of pentafluorobenzene takes place before the C-H cleavage of benzene). In contrast, with the aid of Ag salts, the coordination of pentafluorophenylsilver to Pd center could occur easily with a subsequent C-H activation of benzene in the second step, and the second step significantly raises the whole reaction barrier. Alternatively, in thepresence of Ag salts, the kinetically preferred mechanism is path C (i.e. the C-H activation of benzene takes place in the first step followed by transmetalation with pentafluorophenyl-silver complex), which is similar to path A. The calculations are consistent with the H/D exchange experiment and kinetic isotope effects. Thus the present study not only offers a deeper understanding of oxidative C-H/C-H coupling reaction, but also provides helpful insights to further development of more efficient and selective oxidative C-H/C-H coupling reactions.  相似文献   

20.
The morphology and surface roughness of silver deposits formed by cementation in 0.5M H2SO4 solution containing 0.5M CuSO4 was investigated at various temperatures. The influence of O2 on the morphology of deposited Ag on the Cu surface was studied in solutions containing 20 or 100 mg/dm3 initial Ag+. Surface‐height‐distribution diagrams were calculated from scanning‐electron‐microscopic (SEM) images. For the lower Ag+ concentration, the formation of granular deposits occurred in the presence of O2. In contrast, under anaerobic conditions, rather flat deposits with tiny Ag crystals were observed. For the higher Ag+ concentration, the presence of O2 did not significantly affect the morphology of the Ag deposit, but increasing temperature resulted in more‐compact and denser dendrites. Differences in the Ag‐deposit morphology and surface roughness were attributed to a different mechanism in the absence of O2. Under anaerobic conditions, a competitive reaction between Ag+ and Cu+ occurs in bulk solution, which consumes additional Ag+ ions. The SEM images and, especially, distribution diagrams of the surface height provided useful information on the formation and expansion of anodic sites on the Cu surface at various temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号