首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enhanced convection, transient conduction, microlayer evaporation, and contact line heat transfer have all been proposed as mechanisms by which bubbles transfer energy during boiling. Models based on these mechanisms contain fitting parameters that are used to fit them to the data, resulting a proliferation of “validated” models. A review of the recent experimental, analytical, and numerical work into single bubble heat transfer is presented to determine the contribution of each of the above mechanisms to the overall heat transfer. Transient conduction and microconvection are found to be the dominant heat transfer mechanisms. Heat transfer through the microlayer and at the three-phase contact line do not contribute more than about 25% of the overall heat transfer.  相似文献   

2.
Experimental studies were conducted on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic binary mixtures of R12+R113, R134a+R113, R22+R113 and R22+R11, at pressures of 0.25 to 0.7 MPa and at heat fluxes up to critical heat flux. The substances employed were chosen such that the components of a given mixture had a large difference in saturation temperatures. The boiling features of the mixtures and the pure substances were observed by photography. The relationship between the boiling features and the reduction in heat transfer coefficient in binary mixtures is discussed in order to propose a correlation useful for predicting the experimental data measured over a wide range of low and high heat fluxes. It is shown that the correlation is applicable also to alcoholic mixtures. The physical role of k, which was introduced to evaluate the effect of heat flux on the reduction in heat transfer coefficient, is clarified based on the measured nucleate pool boiling heat transfer data and the visual observations of the boiling features. Received on 13 May 1997  相似文献   

3.
Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m−2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12-1.67, 0.94-1.39, and 0.85-1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS > CTAB > Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.  相似文献   

4.
5.
Rajulu  K. G.  Kumar  Ravi  Mohanty  Bikash  Varma  H. K. 《Heat and Mass Transfer》2004,41(2):127-132
The pool boiling of acetone, isopropanol, ethanol and water at atmospheric pressure has been carried out on a plain tube, and five different reentrant cavity (REC) heating tubes. The heat flux has remained in a range of 11–42 kW/m2 for all the heating tubes. The enhancement factor, E, has been found to increase with the rise in heat flux, irrespective of the boiling liquid and the test-section tube combinations. For the pool boiling of acetone and isopropanol, the maximum enhancement factor has been attained for REC-2 tube with mouth size of 0.3 mm and for ethanol and water the mouth size could not be optimized, however, the maximum enhancement factor has been attained for REC-4 tube with mouth size of 0.2 mm. A correlation has also been developed to predict the enhancement factor, E, for the pool boiling of the test-liquids on REC heating tubes. This correlation has predicted the enhancement factor, E, in an error band of +12.5 to –7.5%.  相似文献   

6.
Correlations for nucleate boiling heat transfer should be improved, or in the long term possibly be replaced, by the development of mechanistic simulations that include the non-uniform spacing and variable characteristics of the nucleation sites and non-linear interactions between the sites. This paper discusses the interactions that should be included in simulations and some lessons from a first attempt to validate a particular simulation against experimental spatio-temporal data for wall temperature. Input data for nucleation site positions and characteristics are a particular problem and the prospects for obtaining this data from measurements that are independent of boiling are discussed.  相似文献   

7.
A new model to calculate heat transfer coefficients in nucleate boiling is presented. Heat transfer and fluid flow around a single bubble are investigated taking into account the influence of meniscus curvature, adhesion forces and interfacial thermal resistance on the thermodynamic equilibrium at the gas-liquid interface. The model requires only bubble site densities and departure diameters. Further quantities except the thermophysical properties are not needed. From the results bubble growth rates can be derived. As an example nucleate boiling heat transfer coefficients of R-114 were calculated. They agree with experimental values within the experimental accuracy.  相似文献   

8.
9.
Nucleate pool boiling experiments with constant wall temperature were performed using pure R113 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. The bubble growth behaviors during subcooled, saturated, and superheated pool boiling were analyzed using a modified Jakob number that we newly defined. Dimensionless time and bubble radius parameters with the modified Jakob number characterized the bubble growth behavior well. These phenomena require further analysis for various pool temperature conditions, and this study will provide good experimental data with precise constant wall temperature boundary condition for such works.  相似文献   

10.
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.  相似文献   

11.
The experimental data for heat transfer during nucleate pool boiling of saturated liquid metals on plain surfaces are surveyed and a new correlation is presented. The correlation is h = Cq0.7prm, where C and m are, respectively, 13.7 and 0.22 pr < 0.001 and 6.9 and 0.12 for pr > 0.001 (h is in W/m2 K and q in W/m2). This correlation has been verified with data for K, Na, Cs, Li, and Hg from 17 sources over the reduced pressure (pr) range of 4.3 × 10−6 to 1.8 × 10−2. The correlation of Subbotin et al. was found unsatisfactory, but a modified correlation was developed that also gives good agreement with most of the data.  相似文献   

12.
13.
Inoue  T.  Monde  M. 《Heat and Mass Transfer》1994,29(3):171-180
Heat and Mass Transfer - Experimental studies have been made for heat transfer during nucleate pool boiling on a horizontal platinum wire in nonazeotropic binary mixtures of R12+R113, R134a+R113,...  相似文献   

14.
Boiling heat transfer measurements on a tube designed to yield the peripheral variation of heat transfer coefficient without interfering with the nucleation site density are presented. A variation of up to 25% around the tube is found with a maximum at the base. High speed cine photography was used to estimate the variation of mean bubble layer thickness and mean velocities with angle. An iterative heat balance around the periphery indicated a voidage decrease from about unity at the base to 0.3–0.6 at 90°  相似文献   

15.
A semi-empirical model for pool boiling over porous surfaces is presented. The pressure drop across the porous surface is estimated using Darcy?'s law. The significance of the latent heat flux contribution for highly porous surfaces is examined. Two nucleation factors are defined and correlated in terms of measurable quantities using literature data. An expression for the total heat flux in terms of the wall superheat, pore geometry and the physical properties of the liquid is presented. The present model matches well with literature data on pool boiling over porous surfaces, both flat surfaces and tubes from four different sources, thus validating the present approach.  相似文献   

16.
Variation in degree of surface wettability is presented through the application of Cooper’s correlative approach (h ∝ M −0.5 q w ″0.67) for computing enhancement (ϕ) in nucleate pool boiling of aqueous solutions of SDS and Triton X-100 and its presentation with Marangoni parameter (χ) that represents the dynamic convection effects due to surface tension gradients. Dynamic spreading coefficient defined as σ dyn N a , which relates spreading and wetting characteristics with the active nucleation site density on the heated surface and bubble evolution process, represents cavity filling and activation process and eliminates the concentration dependence of nucleate pool boiling heat transfer in boiling of aqueous surfactant solutions. Using the dynamic spreading coefficient (σ dyn N a  = 0.09q w ″0.71), correlation predictions within ±15% for both SDS and Triton X-100 solutions for low heat flux boiling condition (q w ≤ 100 kW/m2) characterised primarily by isolated bubble regime are presented.  相似文献   

17.
Experimental studies on enhancing the pool boiling heat transfer coefficient of binary dilute mixtures of water/glycerol, water/MEG (Mono-ethylene glycol) and water/DEG (di-ethylene glycol) have been carried out. Some particular endothermic chemical reactions related to ammonium salts were used to enhance the pool boiling heat transfer coefficient, simultaneously with occurrence of pool boiling heat transfer. Accordingly, 100?g of Ammonium nitrate, ammonium perborate and Ammonium sulfate were selected to dissolve into mixtures. High and extreme solution enthalpies of each of these ammonium salt powders are employed to reduce the surface temperature around the horizontal cylinder locally. Results demonstrated that presence of ammonium salts into the mixtures deteriorates the surface temperature of cylinder and as the result, higher pool boiling heat transfer coefficient is reported for tested solutions. Results are also reported and compared for different ammonium salts to find the influence of inducing different enthalpies of solution on pool boiling heat transfer coefficient. Obtained results also indicated that presence of endothermic reaction besides the pool boiling heat transfer enhances the heat transfer coefficients in comparison with nucleate pool boiling phenomenon solely.  相似文献   

18.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

19.
Pool boiling heat transfer has been investigated for various binary mixtures, including acetone/isopropanol, water/acetone, water/methanol, water/ethanol, water/isopropanol, water/monoethanolamine, water/diethanolamine and water/triethyleneglycol as test solutions. Many correlations have been developed to predict the pool boiling heat transfer coefficient in mixtures in the past few decades, however the predicted values are not confirming. In addition, the application of many existing correlations requires some individual adjusting parameters that may be not available for every system. In this investigation, a new set of experimental data are presented. These data have been compared to major existing correlations. It is observed that the pool boiling heat transfer coefficients in mixtures are less than the ideal boiling heat transfer coefficient. A new semi-empirical model has been proposed based on the mass transfer resistance to predict the boiling heat transfer coefficient with satisfactory accuracy. The new model does not include any tuning parameter and is applicable to any given binary system. The performance of the proposed model is superior to most existing correlations.  相似文献   

20.
Experiments were conducted to study the effect of tube inclination on nucleate pool boiling heat transfer for different tube diameters and surface roughness values. The results show that as the tube is tilted from the vertical to the horizontal, the temperatures at the top and bottom (with respect to circumference) increase and decrease, respectively. The increase and decrease is such that they almost compensate for each other, resulting in very little variation of the average heat transfer coefficient with tube inclination. The increase in bubble sliding length at the bottom wall and decrease in bubble sliding length at the top wall are thought to be the reasons for this behaviour. Experiments have been conducted with water, ethanol and acetone at atmospheric pressure, to confirm similar effects of inclination irrespective of fluid property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号