首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic liquids (ILs), by virtue of their special properties such as functional designability and high thermal stability, have been widely used as absorbent to CO2 and catalyst for CO2 conversion. This review summarizes the recent developments from 2019 to 2021 on task-specific ionic liquids (TSILs) with modulable properties by introducing specific functional groups to anions or/and cations for CO2 absorption and conversion. The increase of basicity in TSILs by introducing amino/or amine groups or collaboration with multiple active sites of carboxyl, imidazolyl, pyridyl, and hydroxyl groups achieve high CO2 affinity and absorption capacity. To solve the defects of high viscosity, ether groups are introduced to TSILs for CO2 absorption. Besides, recent studies on CO2 thermal catalytic conversion focused on the construction of C–O bonds and C–N bonds are also summarized. The catalytic activity of TSILs is enhanced by improving the synergy effect of different functional groups on anions and cations. It is expected that this minireview will provide the understanding of the current developments and perspective for practical CO2 absorption and transformation by TSILs.  相似文献   

2.
The designed synthesis of a series of copper(II) specific fluorogenic hydrophobic task‐specific ionic liquids (TSILs) from a new naphthalene‐based tetradentate ligand is reported. Absorption and fluorescence spectral studies reveal both the ligand and its derivative TSILs show exclusive selectivity towards copper(II) ions. The Stern–Volmer method for calculation of the detection limit for ligand and TSIL1–3 shows values of 0.12, 20, 17, and 15 μM , respectively. Extraction and striping studies by doping these TSILs in [bmim][NTf2] demonstrated that these TSILs are recyclable extractants for the selective recovery of CuII ions from a mixture of 14 relevant metal chloride aqueous solutions in biphasic liquid–liquid extraction with approximately 95 % recovery.  相似文献   

3.
N-酯基取代吡啶功能化离子液体的合成与表征   总被引:3,自引:0,他引:3  
合成了系列新型N-酯基取代吡啶功能化离子液体, 采用NMR、FTIR、ESI-MS、TG-DSC等表征手段, 对其结构组成和物理性质进行了全面的表征. 结果表明, 阴离子相同的N-酯基功能化离子液体与常规溶剂的相溶性基本相同, 由于酯基的引入, 这类离子液体与乙酸乙酯的相溶性降低. 含有相同阴离子的N-酯基吡啶功能化离子液体的熔点随着取代基碳链的增长逐渐下降, 阴离子为BF4、PF6的功能化离子液体具有较好稳定性, 热分解温度在300 ℃左右. 通过酯基对离子液体阳离子进行功能化, 可以对离子液体的物理、化学性能进行调变.  相似文献   

4.
A new class of functionalized imidazolium-based Task-Specific Ionic Liquids (TSILs) is designed as low-cost bifunctional organocatalyst. New alkoxymethylimidazolium ILs are efficiently synthesized under solvent free conditions and extensively characterized by physical and spectral studies. The newly synthesized ILs demonstrate excellent catalytic potential in condensation reactions of high importance, such as the Biginelli reaction for the synthesis of medicinally important dihydropyrimidiones. The effect of the alkoxy group and counter-ions in the imidazolium salts were evaluated in detail. Moreover, computational studies were employed to explore the structural dynamics and physicochemical properties of the prepared ionic liquids. 3-(iso-butoxymethyl)-1-methyl-1H-imidazol-3-ium tetrafluoroborate (iBOMMIMBF4 7) exhibited the highest catalytic ability due to the combined influence of the alkoxy group structure, counterion nature, high electrophilicity index, and availability of the reactive C2-H. Some notable advantages of the new TSILs include efficient catalyst preparation, simple work-up procedure, recyclability, short reaction times, and excellent yields.  相似文献   

5.
Two new diglycolamide‐based task‐specific ionic liquids (DGA? TSILs) were evaluated for the extraction of actinides and lanthanides from acidic feed solutions. These DGA? TSILs were capable of exceptionally high extraction of trivalent actinide ions, such as Am3+, and even higher extraction of the lanthanide ion, Eu3+ (about 5–10 fold). Dilution of the DGA? TSILs in an ionic liquid, C4mim+ ? NTf2?, afforded reasonably high extraction ability, faster mass transfer, and more efficient stripping of the metal ion. The nature of the extracted species was studied by slope analysis, which showed that the extracted species contained one NO3? anion, along with the participation of two DGA? TSIL molecules. Time‐resolved laser fluorescence spectroscopy (TRLFS) analysis showed a strong complexation with no inner‐sphere water molecule in the EuIII? DGA? TSIL complexes in the presence and absence of C4mim+ ? NTf2? as the diluent. The very high radiolytic stability of DGA? TSIL 6 makes it one of the most‐efficient solvent systems for the extraction of actinides under acidic feed conditions.  相似文献   

6.
功能化离子液体是将功能团弓l入到离子液体的阳离子或阴离子上,从而赋予离子液体某种特殊性质.将具有催化活性的基团弓I入到离子液体的阳离子或阴离子上所得到的功能化离子液体,是一类新型的催化材料.除了具有优异的催化性能,其特殊的物理化学性质很容易实现产物与催化剂的分离,正在许多重要催化过程中发挥作用.本文主要介绍近年来我们关于功能化离子液体的制备、性质及其在催化反应中的应用等研究,同时指出了目前存在的问题,并对今后发展趋势进行了展望.  相似文献   

7.
Abstract

The present overview describes ionic liquids as alternate, attractive solvents of today and tomorrow in organic synthesis. Since this subject is too wide and developments have been too fast, only a recent account is presented on indispensable carbon-carbon bond forming named reactions such as Knoevenagel, Michael Aldol, Biginelli Reaction, and so on, which has never been done before exclusively.  相似文献   

8.
功能化离子液体的制备及其在合成中的应用   总被引:2,自引:1,他引:2  
功能化离子液体;手性离子液体;酸性离子液体  相似文献   

9.
N-羧基吡啶功能化离子液体的表征   总被引:3,自引:0,他引:3  
合成了系列新型N-羧基吡啶功能化离子液体, 利用1H NMR、13C NMR、IR、DSC对其进行表征并研究了其与常规溶剂的相溶性, 采用酸碱滴定法测量了系列离子液体的酸离解常数pKa值. N-羧基取代吡啶功能化离子液体的pKa值在2.5~4.0之间, 并随阳离子取代羧基碳链的增长而增大; 离子之间形成氢键及阴、阳离子的大小是影响离子液体熔点的主要因素. 阴离子越小, 熔点越高. 所合成的N-羧基吡啶功能化离子液体具有相同的相溶性且由取代羧基所决定, 与常见烷基咪唑离子液体相比, N-羧基吡啶功能化离子液体与丙酮、二氯甲烷并不相溶. 功能化离子液体的阳离子取代基是影响其物化性能的主要因素, 通过改变功能化基团碳链的长短及与不同阴离子进行组合, 可以对功能化离子液体物理、化学性能进行调节.  相似文献   

10.
Ionic liquids are organic salts that are liquid at ambient temperatures, preferably at room temperature. They are nonvolatile, thermally and chemically stable, highly polar liquids that dissolve many organic, inorganic, and metallo‐organic compounds. Many combinations of organic cations with different counterions are already known, and the properties of ionic liquids may be adjusted by the proper selection of the cation and counterion. In the last decade, there has been increasing interest in using ionic liquids as solvents for chemical reactions. The interest is stimulated not only by their nonvolatility (green solvents) but also by their special properties, which often affect the course of a reaction. In recent years, ionic liquids have also attracted the attention of polymer chemists. Although the research on using ionic liquids in polymer systems is still in its infancy, several interesting possibilities have already emerged. Ionic liquids are used as solvents for polymerization processes, and in several systems they indeed show some advantages. In radical polymerization, the kp/kt ratio (where kp is the rate constant of propagation and kt is the rate constant of termination) is higher than in organic media, and thus better control of the process can be achieved. Ionic liquids, as electrolytes, have also attracted the attention of researchers in the fields of electrochemical polymerization and the synthesis of conducting polymers. Finally, the blending of ionic liquids with polymers may lead to the development of new materials (ionic liquids may act as plasticizers, electrolytes dispersed in polymer matrices, or even porogens). In this article, the new developments in these fields are briefly discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4675–4683, 2005  相似文献   

11.
Abstract

Alternative solvents such as supercritical carbon dioxide, water, and ionic liquids are receiving an increase of interest as better replacements for conventional solvents in chemical reactions. They have been called sustainable green solvents because they are highly promising reaction mediums for organic synthesis. This review presents an overview of some selected chemical reactions that have been developed in these green solvents with a particular emphasis on metal-catalyzed reactions.  相似文献   

12.
离子液体中的不对称合成研究进展   总被引:7,自引:0,他引:7  
离子液体作为溶剂已广泛应用于许多有机化学反应.总结了离子液体中的不对称有机反应,如氢化反应、酰基化反应、环氧化反应、酶催化反应等.  相似文献   

13.
The synthesis of two task-specific ionic liquids (TSILs) bearing 2-hydroxybenzylamine entities is described. These compounds are based on an imidazolium substructure onto which one hydrobenzylamine-complexing moiety is grafted. We have demonstrated that, whether pure or diluted, TSIL is able to extract americium ions. Furthermore, recovery of americium from the IL phase into a receiving phase can be achieved under acidic conditions. A possible mechanism for the metal-ion partitioning is presented, in which the extraction system is driven by an ion-exchange mechanism.  相似文献   

14.
以咪唑基离子液体为代表,综述了近期普通咪唑基离子液体、功能咪唑基离子液体、支撑咪唑基离子液体和聚合咪唑基离子液体在分离固定CO2方面的研究进展,说明了各类咪唑基离子液体分离固定CO2的可行性及优缺点,并总结了离子液体固定CO2的影响因素和分离机制.  相似文献   

15.
Task-specific ionic liquids (TSILs) and more specifically binary task-specific ionic liquids (BTSILs), a unique subclass, have been shown to be excellent supports for solution-phase chemistry. The negligible volatility of ionic liquids enables their use as stable droplet microreactors in atmospheric environments without oil protection or confinement. These droplets can be moved, merged and mixed by electrowetting on a chip. Solution-phase synthesis can be performed on these open digital microfluidic labs-on-a-chip as illustrated by a study of the Grieco three-component reaction in [tmba][NTf(2)]-droplet (tmba=N-trimethyl-N-butylammonium NTf(2)=bis(trifluoromethylsulfonyl)imide) microreactors. A detailed study of matrices and scale effects on conversion and kinetic rates of this three-component condensation is presented in this paper. Reactions have been shown to be slower in droplets than in batches in the absence of additional mixing. Also, a significant influence of the ionic-liquid matrix has been observed. Finally, an increase of droplet's temperature resulted in a kinetics enhancement so as to reach macroscale reaction rates, probably because of a much better mixing of reaction's components involving a Marangoni's effect.  相似文献   

16.
陈彪  隆泉  郑保忠 《化学进展》2012,(Z1):225-234
磁性离子液体是指能够吸附在磁铁上,在外加磁场作用下具有一定磁化强度的离子液体。本文综述了自2004年磁性离子液体概念提出至今在各领域的应用,其可以催化吡咯、3-甲基噻吩等单体合成导电高分子纳米微球,同时起到溶剂和模板的作用;还可以通过外加磁场调整产物的微观结构和形貌,从而得到不同的纳米结构;它也可以充当Lewis酸催化剂,催化傅克反应等一系列化学反应,并可以回收重复使用,而且回收有望通过磁场简单实现;与碳纳米管以共价键结合可以制备具有磁性的碳纳米管。除此之外,磁性离子液体在光控顺磁性超分子体系、吸收有机挥发物等领域的应用在近年也陆续有报道。  相似文献   

17.
Summary. Thermal retro-Michael decomposition of task specific ionic liquids (TSILs) was efficiently suppressed by hydrogenation of the oxobutyl side chain yielding a hydroxy-functionalized TSIL.  相似文献   

18.
The synthesis and characterization of several compounds representing a new class of multitask‐specific phosphonium ionic liquids that contain a maleimide functionality is reported. The maleimide moiety of the ionic liquid (IL) is shown to undergo Michael‐type additions with substrates containing either a thiol or amine moiety, thus, serving as a template to introduce wide structural diversity into the IL. Multitask‐specific ILs are accessible by reaction of the maleimide with Michael donors that are capable of serving some function. As a model example to illustrate this concept, a redox active ferrocenyl thiol was incorporated and examined by cyclic voltammetry. Because the maleimide moiety is highly reactive to additions, the task‐specific ionic liquids (TSILs) are prepared as the furan‐protected Diels–Alder maleimide. The maleimide moiety can then be liberated when required by simple heating.  相似文献   

19.
功能化离子液体室温催化合成乙酸苄酯   总被引:5,自引:1,他引:4  
制备了N-甲基-N′-磺酸烷基-咪唑阴离子型功能化室温离子液体,研究了功能化室温离子液体(TSILs)于室温下催化乙酸和苯甲醇反应合成乙酸苄酯的新方法,考察了多种TSILs的催化性能。结果表明,所合成的TSILs具有很高的催化活性,乙酸和苯甲醇的摩尔比为1:1.3,在室温下反应2.5 h,乙酸苄酯的产率可达92%,选择性超过99%。由于生成的乙酸苄酯不溶于催化体系,反应产物与催化体系分层,通过简单的倾析便可实现产物分离,简化了分离过程。离子液体可以循环使用,而其催化活性没有明显降低。  相似文献   

20.
Pd/羧基功能化离子液体选择性催化氧化苯乙烯   总被引:1,自引:0,他引:1  
 利用羧基对咪唑型离子液体的阳离子进行功能化,得到一系列具有不同羧基数目及与不同阴离子搭配的N-羧基功能化咪唑离子液体(TSILs), 进而构筑PdCl2/TSILs催化剂体系. 以过氧化氢为氧化剂,将PdCl2/TSILs用于选择性催化氧化苯乙烯合成苯乙酮. 研究结果表明, PdCl2/TSILs催化体系对目标反应具有理想的催化性能,羧基功能化离子液体的阳离子及其搭配的阴离子对苯乙酮的选择性和产率均有显著的影响. 阳离子的羧基数目越多,阳离子的不对称性越高, PdCl2/TSILs催化剂体系的活性越好. 含有相同阳离子的PdCl2/TSILs催化剂体系,其催化性能按照阴离子PF-6<H2PO-4<Cl-<BF-4的顺序递增且与其酸强度顺序相反. 含有三羧基的功能化离子液体与PdCl2构筑的催化剂体系具有最佳的催化性能,在55 ℃下,该催化剂体系的转换频率值达到125 h-1, 苯乙烯可以完全转化且苯乙酮的选择性为91%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号