首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative determination of Zr in the system constituted by quartz microspheres functionalized with two kinds of organometallic compounds has been studied due to the importance of the correct quantization of the Zr from a catalytic point of view. Two parallel approximations were done, i.e. acid leaching and direct solid quantization. To validate the acid leaching TXRF measures, ICP-MS analysis were carried out. The results obtained by means of the optimization of the quantitative direct solid procedure show that, with a previous particle size distribution modification, TXRF obtain the same analytical results as ICP-MS and TXRF by acid leaching way but without previous chemical acid manipulation. This fact implies an important improvement for the analysis time, reagents costs and analysis facility and it proves again the versatility of TXRF to solve analytical problems in an easy, quick and accurate way. Additionally and for the direct solid TXRF measurements, a deeper study was done to evaluate the intrinsic analytical parameters of the Zr TXRF analysis of this material. So, the influence of the particle size distributions (modified by means of a high power ultrasound probe) with respect to uncertainty and detection limits for Zr were developed. The main analytical conclusion was the strong correlation between the average particle sizes and the TXRF analytical parameters of Zr measurements, i.e. concentration, accuracy, uncertainty and detection limits.  相似文献   

2.
Ge substrates are recently being reconsidered as a candidate material for the replacement of Si substrates in advanced semiconductor devices. The reintroduction of this material requires reengineering of the standard IC processing steps. In this paper, we present the extension of the methodology of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry (VPD–DC–TXRF) for metallic contamination analysis towards Ge substrates. A first step that asked for adaptation was the collection chemistry as the Ge wafers surface is not hydrophobic after the VPD treatment. The contact angle could be significantly increased using a concentrated HCl solution. This chemistry has been proved to perform well in the collection of metals from intentionally contaminated Ge wafers. A second step that needed optimization was the matrix removal method as a sample preparation step prior to the TXRF analysis. First, the upper limits of TXRF on Ge containing solutions have been characterized. The accuracy of TXRF is found to be acceptable for Ge contents lower than 1×1014 atoms (250 ppb in 50 μL) but decreases systematically with higher Ge contents. Fortunately, Ge can be volatilized at low temperatures as GeCl4 by the addition of HCl. The parameters within this method have been investigated with respect to the removal of Ge and the recovery of metal traces. Finally, the full VPD–DC–TXRF method has been applied on intentionally contaminated Ge wafers and proved to be very accurate.  相似文献   

3.
Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like inductively coupled plasma (ICP) and atomic absorption spectroscopy (AAS) shows that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy).  相似文献   

4.
An electrolytic separation and enrichment technique was developed for the determination of trace elements by total-reflection X-ray fluorescence spectroscopy (TXRF). The elements of interest are electrodeposited out of the sample solution onto a solid, polished disc of pure niobium which is used as sample carrier for the TXRF measurement. The electrochemical deposition leads to a high enrichment of the analytes and at the same time to a removal of the matrix. This results in substantially improved detection limits in the lower picogram per gram region. The deposited elements are directly measured by TXRF without any further sample preparation step. The homogeneous thin layer of the analytes is an ideal sample form for TXRF, because scattered radiation from the sample itself is minimized. The proposed sample preparation method is useful particularly for the analysis of heavy metals in liquid samples with for TXRF disturbing matrices, e.g. sea water.  相似文献   

5.
Total reflection X-ray fluorescence spectrometry (TXRF) is presented as a genuine surface analytical technique. Its low information depth is shown to be the characteristic feature differentiating it from other energy dispersive X-ray fluorescence methods used for layer and surface analysis. The surface sensitivity of TXRF and its analytical capability together with the limitations of the technique are discussed here using typical applications including the contamination control of silicon wafers, thin layer analysis and trace element determination. For buried interfaces and implantation depth profiles in silicon a combination of TXRF and other techniques has been applied successfully. The TXRF method has the particular advantage of being calibrated without the need for standards. This feature is demonstrated for the example of the element arsenic.  相似文献   

6.
The multielement trace analytical method ‘total reflection X-ray fluorescence’ (TXRF) has become a successfully established method in the semiconductor industry, particularly, in the ultra trace element analysis of silicon wafer surfaces. TXRF applications can fulfill general industrial requirements on daily routine of monitoring wafer cleanliness up to 300 mm diameter under cleanroom conditions. Nowadays, TXRF and hyphenated TXRF methods such as ‘vapor phase decomposition (VPD)-TXRF’, i.e. TXRF with a preceding surface and acid digestion and preconcentration procedure, are automated routine techniques (‘wafer surface preparation system’, WSPS). A linear range from 108 to 1014 [atoms/cm2] for some elements is regularly controlled. Instrument uptime is higher than 90%. The method is not tedious and can automatically be operated for 24 h/7 days. Elements such as S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sn, Sb, Ba and Pb are included in the software for standard peak search. The detection limits of recovered elements are between 1×1011 and 1×107 [atoms/cm2] depending upon X-ray excitation energy and the element of interest. For the determination of low Z elements, i.e. Na, Al and Mg, TXRF has also been extended but its implementation for routine analysis needs further research. At present, VPD-TXRF determination of light elements is viable in a range of 109 [atoms/cm2]. Novel detectors such as silicon drift detectors (SDD) with an active area of 5 mm2, 10 mm2 or 20 mm2, respectively, and multi-array detectors forming up to 70 mm2 are commercially available. The first SDD with 100 mm2 (!) area and integrated backside FET is working under laboratory conditions. Applications of and comparison with ICP-MS, HR-ICP-MS and SR-TXRF, an extension of TXRF capabilities with an extremely powerful energy source, are also reported.  相似文献   

7.
Experiments have been carried out using total reflection X-ray fluorescence (TXRF) to determine the location of arsenic cross-contamination on or in silicon and silicon oxide, respectively, caused during argon-implantation. TXRF has been applied at varying angles of incidence — the so-called angle scan mode. By comparing the angle scan curves of implanted samples with those of a wafer, spin-coated with arsenic, at which arsenic is certainly located on top of the silicon surface, clear differences are observed. This indicates the presence of arsenic embedded in the subsurface. These observations are confirmed by Rutherford backscattering measurements, by modeling As-implantation profiles for low implantation energies as well as by step-by-step oxide etching followed by standard TXRF analysis. This fast and non-destructive application of TXRF angle scan appears a useful method for qualitative depth profiling.  相似文献   

8.
Thin films of novel dielectric and ferroelectric materials, such as barium strontium titanate (BST) and strontium bismuth tantalate (SBT), which are scheduled for short-term implementation into standard microelectronic device technology, contain elements like Bi, Sr and Ba which may involve risks with regard to device yield and reliability. Therefore, the high-temperature behavior of bismuth, strontium and barium impurities on Si (100) substrates was studied. Intentionally contaminated Si substrates were annealed at 1000°C under different ambient (inert, oxidizing) by rapid thermal annealing (RTA) or in a furnace and analyzed by total reflection X-ray fluorescence spectrometry (TXRF), vapor phase decomposition/TXRF (VPD/TXRF) and electrolytic metal tracer (Elymat) technique. Ba and Sr are incorporated in the existing or growing oxide during rapid thermal annealing (RTA). Cross-contamination due to gas phase transport may occur in the case of Bi, in particular under N2 atmosphere, but is of no concern in the case of Ba and Sr. All three contaminants do not exert an influence on the minority carrier lifetime on their own. The results illustrate that TXRF and VPD/TXRF are appropriate techniques for such studies.  相似文献   

9.
KDNBF (potassium 4,6-dinitrobenzofuroxan) has been used as a primer explosive in igniters and detonators for many years. Considerable information about the sensitivity of KDNBF to various stimuli, such as impact, friction, shock and electrostatic charge, is known. However, the thermal sensitivity of KDNBF has been relatively unexplored. Hence, there is very little information available concerning the fundamental thermal properties of KDNBF. Therefore, as part of an extensive thermal hazard assessment, DSC, TG, accelerating rate calorimetry (ARC) and heat flux calorimetry (HFC) measurements have been undertaken on KDNBF. The results demonstrate that KDNBF decomposes via a multi-step exothermic process directly from the solid state. The decomposition process does not appear to depend on the nature of the atmosphere, except in the final stage of the TG decomposition in air, where remaining carbonaceous material is converted to CO2. The first stage of the decomposition is sufficiently rapid that ignition occurs if too large a sample is used. Dynamic and isothermal methods were used to obtain the kinetic parameters and a range of activation energies were obtained, depending on the experimental conditions. The kinetic results have been analyzed in terms of various solid state decomposition models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Submicron semiconductor manufacturing requires ultra-clean processes and materials to achieve high product yields. It is demonstrated that electrothermal evaporation (ETV) in a graphite furnace coupled with ICPMS offers a new possibility for a fast simultaneous analysis of eight elements with detection limits below 0.2 ng/g in conc. hydrofluoric acid and buffered oxide etch (ammonium fluoride/hydrogen fluoride mixture). ETV-ICPMS also comprises significant improvements in the analysis of metal contamination on silicon wafer surfaces with respect to currently used methods. The contaminants on the surface are usually analyzed by total reflexion X-ray fluorescence spectrometry (TXRF) or dissolved by HF vapour (vapour phase decomposition; VPD) or a mixture of hydrofluoric acid and hydrogen peroxide (droplet surface etching, DSE) and analyzed by GFAA or TXRF. ETV-ICPMS combines the advantages of both analytical methods: the multielemental advantage of TXRF and the possibility to analyze light elements like Al, Mg, Na which may not be analyzed by TXRF. With VPD/DSE-ETV-ICPMS detection limits between 0.2 and 2×109 atoms cm?2 on a 6″ wafer have been achieved in a simultaneous analysis of eight elements. The main advantage of ETV-ICPMS versus conventional ICPMS in both applications — chemical and surface analysis — is its capability to analyze Fe in the sub-ng/g range. As Fe is one of the most important impurities in semiconductor manufacturing ETV-ICPMS is much more useful for semiconductor applications than low-resolution ICPMS. For the present application potassium iodide was used as a modifier. It enhances the sensitivity by a factor of 3–4 and improves the reproducibility significantly.  相似文献   

11.
Several different total reflection X-ray fluorescence (TXRF) experiments were conducted at the plane grating monochromator beamline for undulator radiation of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II, which provides photon energies between 0.1 and 1.9 keV for specimen excitation. The lower limits of detection of TXRF analysis were investigated for some low Z elements such as C, N, O, Al, Mg and Na in two different detection geometries for various excitation modes. Compared to ordinary XRF geometries involving large incident angles, the background contributions in TXRF are drastically reduced by the total reflection of the incident beam at the polished surface of a flat specimen carrier such as a silicon wafer. For the sake of an application-oriented TXRF approach, droplet samples on Si wafer surfaces were prepared by Wacker Siltronic and investigated in the TXRF irradiation chamber of the Atominstitut and the ultra-high vacuum TXRF irradiation chamber of the PTB. In the latter, thin C layer depositions on Si wafers were also studied.  相似文献   

12.
In the last years, there has been a revival of total reflection X-ray fluorescence spectrometry (TXRF), which was firstly applied for analytical purposes in the late 80s. The aim of this work is to discuss and compare the current approaches for sample pretreatment including in situ microdigestion, slurry preparation, acid digestion, extraction, etc. prior to TXRF analysis. Advantages and drawbacks inherent to each of those procedures are considered. A comprehensive revision in the period January 2008–July 2013 about different sample preparation strategies prior to TXRF analysis apart from early pioneering reports dealing with sample pretreatment are included in the review. Non-conventional sample pretreatment approaches such as microflow online preconcentration, lab-on-a-chip, etc., are also discussed.Finally, future prospects in sample preparation prior to TXRF analysis are outlined.  相似文献   

13.
Applicability of Total Reflection X-ray Fluorescence (TXRF) spectrometry for the determination of trace metals at concentration of µg/g level in thorium oxide was studied. The TXRF spectrometer was calibrated using a multielement standard solution and the method was validated by analyzing another multielement standard solution. Sample preparation conditions were optimized for the TXRF determinations of trace metals in thorium oxide. The elements K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Ba and Pb present in thorium oxide standards were determined after dissolving them in HNO3/HF mixture and separating the bulk matrix, thorium, by solvent extraction using tri-n-butyl phosphate (TBP) and tri-n-octyl phosphine oxide (TOPO) as extractants. A comparison of TXRF determined concentrations of trace elements Ca, V, Cr, Mn, Fe, Ni and Cu with the certified values shows that TXRF determined concentrations have an RSD of 20% (1 s for n = 4) and are within an agreement of 20% of the certified values in most of the cases.  相似文献   

14.
To assess the structural variability of colloidal humic substances and the associated heavy metals an off-line coupling of asymmetric flow field-flow fractionation (AF4) with total-reflection X-ray fluorescence analysis (TXRF) is presented. AF4 allows a rather gentle separation of colloids with a minimum of interference and artifacts as no shear forces, drying, or interactions with a stationary phase are involved. After a calibration with suitable polymer particles of known molecular weight, the molecular weight distribution of colloidal humic substances between 1 and 10(3) kDa can be assessed with AF4. The combination with TXRF permits a simultaneous multielement analysis after preconcentration of samples on the AF4 channel using an optimized buffer. The analysis of seepage and sewage water sample and a sewage sludge sample yielded continuous distributions of the molecular weight and the associated heavy metals. The potential of AF4-TXRF coupling for the study of metal ion exchange equilibria with colloids was demonstrated by spiking seepage water with various heavy metals and subsequent AF4-TXRF analysis of the heavy metals bound to the colloidal fraction (Cu, Cr, Zn, Ni, Co).  相似文献   

15.
Total reflection X-ray fluorescence (TXRF) analysis is an established technique for trace-element analysis in various types of samples. Though expensive large-scale systems restricted the applications in the past, in this study the capability of a benchtop system for trace elemental analysis is reported. The suitability of this system for the mobile on-site analysis of heavy metal contaminated soils and sediments is reported as well as the possibilities and restrictions of TXRF for additional applications, including trace-element analysis of water, glass and biological samples.  相似文献   

16.
Magnesium formate dihydrate has been synthesized by the action of formic acid on anhydrous magnesium oxide. This product analysed as Mg(COOH)2 · 2H2O. Its mode of thermal decomposition has been studied by thermal methods of analysis including simultaneous DTA/mass spectrometry. Nitrogen adsorption surface area of the solid products at various stages of its decomposition have been obtained. X-Ray diffraction and scanning electron micrographs have also been used to interpret the results. The decomposition of magnesium formate took place in three stages, which includes a phase change, at 265°C. The endotherm at 430°C changed to an exotherm in the presence of air; it corresponded to the decomposition of a new anhydrous phase of magnesium formate. The effect of the sample holder and changing atmospheres on the DSC analysis has been investigated. A scheme is presented for the thermal decomposition.  相似文献   

17.
This work presents the first application of the total-reflection X-ray fluorescence (TXRF) to the compositional study of magnetic ferrofluids. With the aims of validating the best analytical conditions and also, limitations of the TXRF in the compositional study of these materials, an alternative empirical method, based in the use of angle-dependence TXRF (AD-TXRF) measurements, is proposed. Three kinds of ferromagnetic nanoparticles, with different morphologies, have been studied. The techniques of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES) have been used to validate the TXRF results. In contrast with the plasma techniques, the developed TXRF procedure need not of previous chemical acid digestion. Additionally, two procedures of magnetic nanoparticles synthesis, co-precipitation and laser-pyrolysis, have been checked for the contaminants trace metals Zn, Mn and Cr. It has been found that the method of laser-pyrolysis produces nanoparticles of higher purity.  相似文献   

18.
Strontium zirconyl oxalate hexahydrate (SZO) is prepared and characterized by chemical analysis and IR spectral studies. Its thermal decomposition studies have been made using thermogravimetry (TG) and differential thermal analysis (DTA). The decomposition has been found to proceed through three major steps (i) a three stage dehydration, (ii) decomposition of the oxalate and (iii) decomposition of carbonate to strontium zirconate. Carbon dioxide is found to be trapped in the solid during the decomposition of the oxalate. The identification of residues at various stages has been done by IR spectra and chemical analysis.  相似文献   

19.
This review is focused on the application of total reflection X-ray fluorescence (TXRF) spectrometry in the field of biological research. In the last decade, most papers were published by authors who applied laboratory-scale TXRF equipments. The application of synchrotron radiation as excitation source (SR-TXRF) shows a slowly increasing tendency. In the cited papers the micro-, trace and multielement capability of these TXRF techniques was demonstrated in the clinical and medical laboratory practice, as well as in various plant physiological studies. For speciation of elements in biological matrices, the TXRF was used as element specific detector following an off-line separation step (e.g., thin layer chromatography, high performance liquid chromatography), however, these off-line methods are not competitive with the on-line coupled HPLC-inductively coupled plasma mass spectrometry.  相似文献   

20.
Sapphire is presented as a new sample carrier material for total-reflection X-ray fluorescence spectrometry (TXRF). A comparison with conventional sample carrier materials such as quartz glass, Perspex®, glassy carbon and boron nitride demonstrates that sapphire has all the physical and chemical properties required for TXRF micro and trace analysis. Moreover, sapphire sample carriers allow the determination of silicon in many matrices in a comparatively simple way. Especially for airborne particulate matter, acid digestion can be avoided by cool-plasma ashing of suitable filter materials directly on the sample carrier. This technique has been successfully applied to environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号