首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overcoming the phenomenon known as "difficult" synthetic sequences has been a major goal in solid-phase peptide synthesis for over 30 years. In this work the advantages of amide backbone-substitution in the solid-phase synthesis of "difficult" peptides are augmented by developing an activated N(alpha)()-acyl transfer auxiliary. Apart from disrupting troublesome intermolecular hydrogen-bonding networks, the primary function of the activated N(alpha)()-auxiliary was to facilitate clean and efficient acyl capture of large or beta-branched amino acids and improve acyl transfer yields to the secondary N(alpha)()-amine. We found o-hydroxyl-substituted nitrobenzyl (Hnb) groups were suitable N(alpha)()-auxiliaries for this purpose. The relative acyl transfer efficiency of the Hnb auxiliary was superior to the 2-hydroxy-4-methoxybenzyl (Hmb) auxiliary with protected amino acids of varying size. Significantly, this difference in efficiency was more pronounced between more sterically demanding amino acids. The Hnb auxiliary is readily incorporated at the N(alpha)()-amine during SPPS by reductive alkylation of its corresponding benzaldehyde derivative and conveniently removed by mild photolysis at 366 nm. The usefulness of the Hnb auxiliary for the improvement of coupling efficiencies in the chain-assembly of difficult peptides was demonstrated by the efficient Hnb-assisted Fmoc solid-phase synthesis of a known hindered difficult peptide sequence, STAT-91. This work suggests the Hnb auxiliary will significantly enhance our ability to synthesize difficult polypeptides and increases the applicability of amide-backbone substitution.  相似文献   

2.
The preparation of sterically hindered and polyfunctional C(alpha,alpha)-disubstituted alpha-amino acids (alpha alpha AAs) via alkylation of ethyl nitroacetate and transformation into derivatives ready for incorporation into peptides are described. Treatment of ethyl nitroacetate with N,N-diisopropylethylamine (DIEA) in the presence of a catalytic amount of tetraalkylammonium salt, followed by the addition of an activated alkyl halide or Michael acceptor, gives the doubly C-alkylated product in good to excellent yields. Selective nitro reduction with Zn in acetic acid or hydrogen over Raney Ni gives the corresponding amino ester that, upon saponification, can be protected with the fluorenylmethyloxycarbonyl (Fmoc) group. The first synthesis of an orthogonally protected, tetrafunctional C(alpha,alpha)-disubstituted analogue of aspartic acid, 2,2-bis(tert-butylcarboxymethyl)glycine (Bcmg), is described. Also, the sterically demanding C(alpha,alpha)-dibenzylglycine (Dbg) has been incorporated into a peptide using solid-phase synthesis. It was found that once sterically congested Dbg is at the peptide N-terminus, further chain extension becomes very difficult using uronium or phosphonium salts (PyAOP, PyAOP/HOAt, HATU). However, preformed amino acid symmetrical anhydride couples to N-terminal Dbg in almost quantitative yield in nonpolar solvent (dichloroethane-DMF, 9:1).  相似文献   

3.
The role of a single glycine hinge residue in the structure of BBAT1, a beta(beta)(alpha) peptide that forms a discrete homotrimeric structure in solution, was evaluated with 11 new peptide sequences which differ only in the identity of the residue at the hinge position. The integrity of the structure and oligomeric state of the peptides was evaluated by using a combination of analytical ultracentrifugation and circular dichroism spectroscopy. Initially, it was discovered that the glycine hinge adopts backbone dihedral angles favored in D-amino acids and that incorporation of D-alanine at the hinge position stabilizes the trimer species. Subsequently, the effect of the side chains of different D-amino acids at the hinge position was evaluated. While incorporation of polar amino acids led to a destabilization of the oligomeric form of the peptide, only peptides including D-Ser or D-Asp at the hinge position were able to achieve a discrete trimer species. Incorporation of hydrophobic amino acids D-Leu and D-Phe led to oligomerization beyond a trimer to a tetrameric form. The dramatic differences among the thermodynamic stabilities and oligomeric states of these peptides illustrates the pivotal role of the hinge residue in the oligomerization of the beta(beta)(alpha) peptides.  相似文献   

4.
A method was developed for synthesizing alpha,alpha-disubstituted glycine residues bearing a large (more than 15-membered) hydrophobic ring. The ring-closing metathesis reactions of the dialkenylated malonate precursors proceed efficiently, particularly when long methylene chains tether both terminal olefin groups. Surprisingly, the amino groups of these alpha,alpha-disubstituted glycines are inert to conventional protective reactions (e.g., N-tert-butoxycarbonyl (Boc) protection: Boc(2)O/4-dimethylaminopyridine (DMAP)/CH(2)Cl(2); N-benzyloxycarbonyl (Z) protection: Z-Cl/DMAP/CH(2)Cl(2)). Curtius rearrangement of the carboxylic acid functionality of the malonate derivative after ring-closing metathesis leads to formation of an amine functionality and can be catalyzed by diphenylphosphoryl azide. However, only the intermediate isocyanates can be isolated, even in the presence of alcohols such as benzyl alcohol. The isocyanates obtained by Curtius rearrangement in an aprotic solvent (benzene) were isolated in high yields and treated with 9-fluorenylmethanol in a high-boiling-point solvent (toluene) under reflux to give the N-9-fluorenylmethoxycarbonyl (Fmoc)-protected aminomalonate derivatives in high yield. These hydrophobic amino acids can be incorporated into a peptide by Fmoc solid-phase peptide synthesis and the acid fluoride activation method. The stability of the monomeric alpha-helical structure of a 17-amino-acid peptide was enhanced by replacement of two alanine residues with two hydrophobic amino acid residues bearing a cyclic 18-membered ring. The results of sedimentation equilibrium studies suggested that the peptide assembles into hexamers in the presence of 100 mM NaCl.  相似文献   

5.
Three amino acids were converted into the derivatives 5.2 (from glycine), 6.4a and 6.4b (from alanine), and 8.3a and 8.3b (from O-benzyl serine). These N-alkylated amino acids, which can be deprotected after conversion of the carboxyl into an amide, correspond to the general structure 2.1, a compound class of use in the study of peptide segment coupling by the ligation-acyl transfer method.  相似文献   

6.
Stereoselective syntheses of all four stereoisomers of CF(2)-substituted nonhydrolyzable phosphothreonine derivatives (33, 39, and their enantiomers) and their incorporation into peptides are described herein. Key to the synthesis of these amino acids was construction of secondary phosphate-mimicking difluoromethylphosphonate units along with generation of two stereocenters. The former was achieved using a Cu(I)-mediated cross-coupling reaction of BrZnCF(2)P(O)(OEt)(2) (8) and beta-iodo-alpha,beta-unsaturated ester 12, with stereochemistry of both alpha- and beta-stereocenters being established using bornane-10,2-sultam as a chiral auxiliary. Diastereoselective hydrogenation of a chiral alpha,beta-unsaturated acylsultam (for the beta-center) (e.g., 16a) and subsequent stereoselective bromination (for the alpha-center of the threo derivative) or amination (for the alpha-center of erythro (allo) derivative) were utilized. Transesterification of the bromide to the benzyl ester followed by azide displacement of the halogen, then reduction of the resulting azide, followed by Boc-protection and finally removal of the benzyl group, afforded protected both L- and D-phosphothreonine mimetics (39 and its enantiomer). On the other hand, protected both L- and D-allo-phosphothreonine mimetics (33 and its enantiomer) were synthesized via transesterification of the above-mentioned amination product, followed by hydrogenolytic removal of the benzyl group. Key to utilization of these amino acid analogues in peptide synthesis was removal of ethyl protection from the difluoromethylphosphonate moiety. A two-step deprotection methodology, consisting of a combination of a first-step reagent [0.3 M BSTFA-TBAI in CH(2)Cl(2), BF(3).Et(2)O] followed by a second-step reagent [1 M TMSOTf-thioanisole in TFA, m-cresol, EDT] was developed for use in solid-phase protocols. A 12-residue Cdc (cell division cycle) 2-peptide 41, possessing two nonhydrolyzable phosphoamino acid mimetics (F(2)Pmab 6 and F(2)Pmp 4), was subjected to this deprotection procedure and was obtained in 25% yield based on the protected resin. The present synthetic method affords nonhydrolyzable phosphoamino acid mimetics-containing peptides in high yield without accompanying side reactions.  相似文献   

7.
We have developed a new method to determine the N-terminal amino acid sequences of proteins, regardless of whether their N-termini are modified. This method consists of the following five steps: (1) reduction, S-alkylation and guanidination for targeted proteins; (2) coupling of sulfo-NHS-SS-biotin to N(alpha)-amino groups of proteins; (3) digestion of the modified proteins by an appropriate protease followed by oxidation with performic acid; (4) specific isolation of N-terminal peptides from digests using DITC resins; (5) de novo sequence analysis of the N-terminal peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using the CAF (chemically assisted fragmentation) method or tandem mass spectrometric (MS/MS) analysis according to unblocked or blocked peptides, respectively. By employing DITC resins instead of avidin resins used in our previous method (Yamaguchi et al., Rapid Commun. Mass Spectrom. 2007; 21: 3329), it has been possible to isolate selectively N-terminal peptides from proteins regardless of modification of N-terminal amino acids. Here we propose a universal method for N-terminal sequence analysis of proteins.  相似文献   

8.
For the recognition of all but the simplest naturally occurring molecules, electrochemical sensors based on ferrocene will certainly require chiral centers. To advance the necessary chemistry, this work describes the synthesis and properties of ferrocene derivatives of enantiomerically pure amino acids, peptides, and other chiral amines. Ferrocene aldehyde is condensed with amino acid esters to yield the corresponding Schiff bases 2, which are reduced by NaBH4 in methanol to the ferrocene methyl amino acids 3. An X-ray single-crystal analysis was carried out on the phenylalanine derivative 3a (monoclinic space group P2(1), a = 10.301(1) A, b = 9.647(1) A, c = 18.479(2) A, beta = 102.98(2) degrees, Z = 4). Further peptide chemistry at the C terminus proceeds smoothly as demonstrated by the synthesis of the ferrocene labeled dipeptide Fc-CH2-Phe-Gly-OCH3 5 (Fc = ferrocenyl ((eta-C5H4)Fe(eta-C5H5))). We also report the synthesis of the C,N-bis-ferrocene labeled tripeptide Phe-Ala-Leu and its electrochemical characterization. Starting from the enantiomerically pure ferrocene derivative 9, which was synthesized from ferrocene aldehyde and L-1-amino-ethylbenzene, two diastereomers 10 were obtained by peptide coupling with N-Boc protected D- and L-alanine. There was, however, only very little diastereomeric induction if 0.5 equiv of a racemic mixture of alanine were used. This suggests that amino acid activation rather than coupling is the rate-determining step. A combination of NOESY (nuclear Overhauser effect spectroscopy) spectra and molecular modeling furnished detailed insights into the solution structures of 3, 9, and 10 and was used to rationalize their different reactivity.  相似文献   

9.
The Fmoc/t-Bu solid-phase synthesis of three difficult peptide sequences (a 9-mer, 15-mer, and 24-mer) was performed using N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole as coupling reagent on polystyrene, Tentagel, and ChemMatrix resins. In order to obtain an insight into the specific role of the elevated temperature and/or the electromagnetic field for peptide syntheses carried out using microwave irradiation, peptide couplings and Fmoc-deprotection steps were studied under microwave and conventionally heated conditions at the same temperature. While room temperature couplings/deprotections generally produced the difficult peptides in rather poor quality, excellent peptide purities were obtained using microwave heating at a temperature of 86 degrees C for both the coupling and deprotection steps in only 10 and 2.5 min reaction time, respectively. While for most amino acids no significant racemization was observed, the high coupling temperatures led to considerable levels of racemization for the sensitive amino acids His and Cys. It was demonstrated for all three peptide sequences that when performing the coupling/deprotection steps at the same reaction temperature using conventional heating, nearly identical results in terms of both peptide purity and racemization levels were obtained. It therefore appears that the main effect of microwave irradiation applied to solid-phase peptide synthesis is a purely thermal effect not related to the electromagnetic field.  相似文献   

10.
In this work, a new method for the preparation of peptidyl ketones is presented employing a SmI(2)/H(2)O-mediated coupling of N-peptidyl oxazolidinones with electron-deficient alkenes. The requisite peptide imides were easily prepared by solution-phase peptide synthesis starting from an N-acyl oxazolidinone derivative of an amino acid. Importantly, they could be used directly in the C-C bond-forming step without the need for further functionalization. Coupling of these peptide derivatives with a second peptide possessing an N-terminal acryloyl group leads to ketomethylene isosteres of glycine-containing peptides. This method represents an alternative means for ligating two small peptides through a C-C bond-forming step.  相似文献   

11.
Ionic liquid (IL) resins with an ionic liquid environment on solid support were prepared by immobilizing ionic liquid spacers on polystyrene (PS) resin. The properties of IL resins were dramatically changed as the anions of IL were exchanged. The performance of IL resins for solid-phase peptide synthesis (SPPS) was evaluated by measuring coupling kinetics of the first amino acid and synthesizing several peptides on IL resins.  相似文献   

12.
Ab initio calculations have been used to design radical-resistant amino acid residues. Optimized structures of free and protected amino acids and their corresponding alpha-carbon-centered radicals were determined with B3-LYP/6-31G(d). Single-point RMP2/6-31G(d) calculations on these structures were then used to obtain radical stabilization energies, to examine the effect of steric repulsion between the side chains and amide carbonyl groups on the stability of alpha-carbon-centered peptide radicals. Relative to glycine, the destabilization for alanine and valine residues was found to be approximately 9 and 18 kJ mol(-1), respectively, which correlates with the reactivity of analogous amino acid residues in peptides toward hydrogen atom abstraction in conventional free radical reactions. To design amino acid residues that would resist radical reactions, strategies by which the steric effects could be magnified were considered. This resulted in the identification of tert-leucine and 3,3,3-trifluoroalanine as suitable molecules. With these amino acid residues, the destabilization of the alpha-carbon-centered radicals relative to that of glycine is increased substantially to approximately 36 and 41 kJ mol(-1), respectively. The theoretical predictions have been supported by experimental observations: a tert-leucine derivative was shown to be very slow to react with N-bromosuccinimide, while the corresponding trifluoroalanine derivative was found to be inert.  相似文献   

13.
The 2-(p-biphenylyl)-2-propyloxycarbonyl (Bpoc) group was examined as an N(alpha)-protecting group in the stepwise assembly of the MAP Kinase ERK2 [178-188; Thr(P)(183), Tyr(P)(185)] peptide. The mild acid deprotection of the Bpoc group permitted (i) incorporation of a fully protected phosphothreonyl derivative and (ii) a TFA-based final cleavage step. The first five C-terminal residues (184-188) were incorporated in the Fmoc mode of peptide synthesis, with all subsequent amino acids coupled as their Bpoc-Xxx-OH derivatives. The target product was obtained in high purity and yield, indicating that a Bpoc-based approach to phosphopeptide synthesis was compatible with both the acid-labile side chain protecting groups employed and Hmp-Wang resin.  相似文献   

14.
Substitution of native amino acids by fluoroalkyl analogues represents a new approach for the design of biologically active peptides with increased metabolic stability as well as defined secondary structure and provides a powerful label for spectroscopic investigations. Here, we introduce a methodology for the incorporation of sterically demanding C(alpha)-fluoroalkyl amino acids into the P(1) position of peptides catalyzed by the commercially available proteases trypsin and alpha-chymotrypsin. The combination of 4-guanidinophenyl ester of C(alpha)-fluoroalkyl amino acids as substrate mimetics with frozen-state reaction conditions provided the most efficient strategy for protease-catalyzed site-specific introduction of this kind of nonnatural amino acids into peptide sequences. Consequently, a library of di-, tri-, and tetrapeptides containing alpha-methyl, alpha-difluoromethyl, and alpha-trifluoromethyl alanine, leucine, and phenylalanine in the P(1) position was synthesized catalyzed by trypsin as well as alpha-chymotrypsin. Trypsin was shown to be the more versatile protease.  相似文献   

15.
The value of reversed-phase high-performance liquid chromatography (RP-HPLC) and the field of proteomics would be greatly enhanced by accurate prediction of retention times of peptides of known composition. The present study investigates the hydrophilicity/hydrophobicity of amino acid side-chains at the N- and C-termini of peptides while varying the functional end-groups at the termini. We substituted all 20 naturally occurring amino acids at the N- and C-termini of a model peptide sequence, where the functional end-groups were N(alpha)-acetyl-X- and N(alpha)-amino-X- at the N-terminus and -X-C(alpha)-carboxyl and -X-C(alpha)-amide at the C-terminus. Amino acid coefficients were subsequently derived from the RP-HPLC retention behaviour of these peptides and compared to each other as well as to coefficients determined in the centre of the peptide chain (internal coefficients). Coefficients generated from residues substituted at the C-terminus differed most (between the -X-C(alpha)-carboxyl and -X-C(alpha)-amide peptide series) for hydrophobic side-chains. A similar result was seen for the N(alpha)-acetyl-X- and N(alpha)-amino-X- peptide series, where the largest differences in coefficient values were observed for hydrophobic side-chains. Coefficients derived from substitutions at the C-terminus for hydrophobic amino acids were dramatically different compared to internal coefficients for hydrophobic side-chains, ranging from 17.1 min for Trp to 4.8 min for Cys. In contrast, coefficients derived from substitutions at the N-terminus showed relatively small differences from the internal coefficients. Subsequent prediction of peptide retention time, within an error of just 0.4 min, was achieved by a predictive algorithm using a combination of internal coefficients and coefficients for the C-terminal residues. For prediction of peptide retention time, the sum of the coefficients must include internal and terminal coefficients.  相似文献   

16.
We present here an efficient alternative to N‐methylation for the purpose of morphing protein‐binding peptides into more serum‐stable and cell‐permeable compounds. This involves the incorporation of a cycloalanine (CyAla) into a peptide in a way that avoids difficult coupling steps. We demonstrate the utility of this chemistry in creating a cell‐permeable derivative of a high‐affinity HIV Rev protein‐binding peptide.  相似文献   

17.
N-Sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl(3)- or SOCl(2)-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.  相似文献   

18.
Phosphodiester-type adenylylated (AMPylated) Ser, Thr, and Tyr derivatives were developed for Fmoc solid phase peptide synthesis of AMPylated peptides. One-pot/sequential reaction consisting of condensation of an N-nonprotected adenosine derivative and Fmoc-Ser/Thr/Tyr-OAllyl using allyl-N,N-diisopropylchlorophosphoramidite and subsequent oxidation with m-chloroperbenzoic acid gave phosphotriester-type AMPylated Ser/Thr/Tyr derivatives. After Pd(0)-mediated deprotection of allyl groups, the resulting phosphodiester-type AMPylated Ser/Thr/Tyr derivatives were successfully incorporated into peptides by standard Fmoc solid phase peptide synthesis without significant side reactions including dehydroalanine formation.  相似文献   

19.
Glycosylation is one of the most important post- or co-translational modifications of proteins, which affects the biological activities of the parent proteins by influencing the higher-order structure. Recently, a highly novel variant of glycoproteins that incorporate a C-glycosylated amino acid was identified in various proteins. The total synthesis of one such C-glycosyl amino acid, namely, C (2)-alpha-D-C-mannosylpyranosyl-L-tryptophan and related peptides were successfully achieved. The mannose and tryptophan moieties were connected via ring opening of benzyl-protected 1,2-anhydro-mannose by a lithiated indole derivative. After the functional group conversion and deprotection steps, the glyco-amino acid was synthesized in a concise and stereoselective manner, in high overall yields. The stereoisomer, C (2)-alpha-D-C-glycosylpyranosyl-L-tryptophan was synthesized in a similar way. Furthermore, it was revealed that the intermediate azido acid can serve as a useful building block for peptide elongation. A synthetic route for the peptide bond formation of a glycopeptide, without protection of the hydroxyl groups, using the triazine salt derivative as a coupling reagent is also reported.  相似文献   

20.
To prepare in multigram scale new antagonists of the glycine binding site associated to the NMDA receptor, an efficient distereoselective route was set up. The addition of suitable allyltin reagents to chiral N-aryl alpha-imino esters (R-(+)-tert-butyl lactate used as chiral auxiliary), gave the corresponding alpha amino acid-type derivative in high chemical yield and optical purity. This allylation reaction represents a novel example of efficient long-range stereodifferentiation process. In the last part of the synthesis, a regioselective Heck-type cyclization reaction enabled preparation of the target tetrasubstituted exocycle and trisubtituted endocycle double bond derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号