首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
应用激光吸收和荧光方法,测量了Cs(6P)态与N2碰撞的精细结构转移和碰撞猝灭截面。Cs原子被激光激发到6P3/2态,将与泵浦激光束反向平行的检测激光束调到6PJ→8S1/2的跃迁,测量了6PJ激发态的密度及空间分布,由此计算了6PJ→6S的有效辐射率。在T=337 K(蒸气压公式给出Cs密度N0=1.25×1012cm-3)和N2密度2×1016相似文献   

2.
在Cs2密度约为2×1013 cm-3的纯Cs样品池中,脉冲激光激发Cs2(X1 Σg+)至B 1Πu态,利用原子和分子荧光光谱方法研究了Cs2(B 1Πu)+Cs(6S)的碰撞激发转移过程.用736 nm激发Cs2到B 1Πu(v<10),这时预解离不发生.由B 1Πu→X1 Σg+时间分辨跃迁信号得到B 1Πu态的辐射寿命为(35±7)ns,B1Πu态与Cs原子碰撞转移总截面为(4.0±0.5)×10-14 cm2.用705 nm激发至B 1Πu(v>30)态,这时发生预解离,在不同的Cs密度下,测量了I(D1),I(D2)和分子带的时间积分荧光的相对强度,得到了预解离率为(4.3±1.7)×105 s-1(对预解离到6P3/2)和(4.7±1.9)×106 s-1(对预解离至6P1/2);碰撞转移截面为(0.45±0.18)×10-14 cm2(对转移到6 P1/2)和(4.3±1.7)×10-14 cm2(对转移到6P3/2).结果表明,如果B 1Πu(v)是束缚的,6P原子由碰撞转移产生;如果B 1Πu(v)是预解离的,则6P原子由预解离和碰撞转移产生.  相似文献   

3.
二步激发Cs原子至8S态,测量了碰撞转移过程Cs(6P)+Cs(5D)→Cs(6S)+Cs(nL=9S,5F)的截面,测量由7D,9S和5F态发射的荧光强度,从荧光强度比和σ(7D)值得到了σ(9S)和σ(5F),而σ(7D)已经进行过绝对测量,截面值σ(9S)和σ(5F)分别为8.7×10-15和1.3×10-14?cm2.讨论了能量转移过程9S+6S5F+6S对σ(9S)和σ(5F)的影响.  相似文献   

4.
利用He-Cd激光器的441.6 nm线光解Cs2分子, 使Cs(n2L)(nL=7P, 6D)态得到布居, 在Cs密度1到9×1015 cm-3范围内测量原子荧光对分子荧光强度比, 得到碰撞转移率系数对解离率之比分别为2.9×10-17和7.4×10-18 cm3. 测定Cs nLJ对nLJ'荧光分支比, 得到72P, 62D态精细结构解离率之比分别为0.53和0.43. 从远翼激发得到的精细结构转移截面与从其他激发过程得到的截面结果相符, 给出了碰撞转移到6D态外(即Cs(6D)+Cs(6S)→Cs(6D)以外的态)的截面为1.9×10-14 cm2.  相似文献   

5.
用激光二步激发Cs原子至8S态,从谱线的波长及强度可以确定Cs原子的辐射及碰撞过程,5D态主要是由8S→7P→5D跃迁布居的.在1016-1017Cs密度范围内,测量了碰撞能量合并5D 5D→nL 6S(nL=9D,11S,7F)速率系数,因5D→6P(3.0-3.6μm)处于红外本实验不能探测,利用一个已经测量过的过程(即6P 5D→6S 7D)作相对测量,对于9D,11S和7F态,其平均速率系数分别为(8.4±4.2)×10-10,(7.3±3.6)×10-10和(9.7±4.8)×10-10cm3s-1.讨论了碰撞转移过程11S 6S 7F 6S对速率系数的影响.  相似文献   

6.
Cs(8S)态的碰撞转移和高位原子态的激发   总被引:1,自引:1,他引:0  
在Cs蒸气中,二步激发Cs原子至8S态,研究了其碰撞转移和高位原子态的产生过程.在1016~1017 cm-3密度范围内,测量了碰撞激发转移8S 6S→6D 6S的速率系数.由测得的荧光强度随密度的变化关系,得到k6D=(2.4±0.5)×10-10 cm3·s-1.同时研究了碰撞能量合并过程5D 5D→nL 6S(nL=9D,11S,7F),5D态是由8S→7P→5D的辐射跃迁产生的.由以前测量过的6P 5D 6S 7D的转移速率系数以及6P态的原子密度,结合荧光强度比得到碰撞能量合并过程的速率系数,对于9D,11S和7F各态,其平均值分别为(6.4±3.2)×10-10,(1.0±0.5)×10-10和(8.4±4.2)×10-10 cm3·s-1.  相似文献   

7.
在样品池条件下,利用原子荧光光谱方法,测量了Cs(6DJ)与H2,He碰撞中的反应与非反应能量转移截面.利用脉冲激光886nm线双光子激发Cs(6S)到Cs(6D3/2)态,原子荧光中除含有6D3/2→6P的直接荧光外,还含有6D5/2→6P的转移荧光.利用三能级模型的速率方程分析,在不同的He和H2密度下,分别测垦直接荧光与转移荧光的时间积分荧光强度比,得到了6D3/2与H2和He碰撞的精细结构转移截面分别为σ=(55±13)×10-16和(16±4)×10-16 cm2,同时确定了6D5/2与H2和He的碰撞猝灭速率系数.6D5/2态与H2的碰撞猝灭速率系数比6D5/2与He的大,它是反应与非反应速率系数之和,利用实验数据确定非反应速率系数为6.3×10-10 cm3·s-1,得到6D5/2与H2的反应截面为(2.0±0.8)×10-16 cm2.利用不同H2(或He)密度下6D5/2→6P3/2时间积分荧光强度,得到6D3/2与H2反应截面为(4.0±1.6)×10-16 cm2,6D3/2与H2反应的活性大于6D5/2.  相似文献   

8.
852.3 nm激光线共振激发Cs蒸气的荧光光谱   总被引:2,自引:2,他引:0  
研究了Cs蒸气被单模半导体激光器的852.3 nm线激发产生的荧光光谱。由Cs,Cs2的荧光及其强度确定了在受激Cs-Cs2系统中的若干碰撞和辐射过程。高位态原子线是由Cs(6P3/2)+ Cs(6P3/2)到Cs(6D,8S)的碰撞能量合并形成的,Cs2(B 1u)带则由Cs(6P)+Cs2(X 1Σ+g)碰撞转移产生。通过激发转移、能量碰撞合并和Cs2-Cs碰撞传能研究了6 2P原子的精细结构混合,得到了6P3/2→6P1/2碰撞转移速率系数是(5.2±2.1)×10-11 cm3·s-1,给出了过程Cs2(B 1∏u)+Cs(6S)→Cs2(X 1Σ+g)+Cs(6P1/2)的速率系数是(1.0±0.4)×10-9 cm3·s-1。  相似文献   

9.
Cs(6P)+(Ne,N2)碰撞能量转移   总被引:3,自引:3,他引:0  
在气体样品池条件下,研究了Cs(6P3/2) (Ne,N2)碰撞能量转移过程.用调频半导体激光器激发Cs原子至Cs(6P3/2)态,在不同的Ne或N2气压下,测量了直接6P3/2→6S1/2荧光和转移6P1/2→6S1/2荧光,对于6P3/2与Ne的碰撞,电子态能量仅能转移为Ne原子的平动能.在与N2的碰撞中,向分子振转态的转移是重要的.利用速率方程分析,可以得到碰撞转移速率系数,对于Ne,6PJ精细结构碰撞转移速率系数为1.45×10-12cm3·s-1.对于N2,测量6P Ne和6P N2二种情况下荧光的相对强度比,确定精细结构速率系数为1.64×10-12cm3·s-1,6P态猝灭速率系数为4.88×10-12cm3·s-1.  相似文献   

10.
激光双光子激发K原子至6s或4D态,测鼍了K(6S,4D)与H2的碰撞转移截面.池温在413K,H2气压在4~40 Pa范围内,K(6S,4D)-K的碰撞效应可略去.在激发6S态的情况下,记录6S→4P时间分辨荧光信号,从荧光强度的对数描绘出的直线斜率得到6S态的有效寿命,而4D态的布居随H2的增加而增加,因此引起4D→4P跃迁谱线的增强.在激发4D态的情况下,采用类似方法得到4D态的有效寿命,由Stern Volmet方程,测得6S和4D态的辐射寿命分别为(97±15)ns和(300±45)ns.激发态K原子总的碰撞去佰居截面为(1.6±0.3)×10-14cm2(对6S态)和(40±6)×10-16cm2(对4D态).该总截面中包含向K原子激发态的非反应碰撞转移截面以及与H2反应生成KH的反应截面.激发6S态,测量4D→4P的时间积分荧光强度随H2气压的变化,得到6S→4D的碰撞转移截面为(1.4±0.3)×10-14cm2.由此得到结论:K(6S)态主要是通过物理猝灭到K(4D)态,虽然在K(6S)+H2的碰撞中,观察到了由于化学反应生成的KH的存在.  相似文献   

11.
利用激光诱导荧光方法研究了Cs_2B~1Π_u[(v′=5)]与N2的碰撞能量转移.脉冲激光激发Cs_2基态至B~1Π_u[(v′=5)]态,池温保持在410 K,N_2气压在1.5×10~2 Pa~2.5×10~3 Pa之间变化.荧光中含有直接荧光和碰撞转移荧光成分,记录直接荧光B~1Πu(v′=5)→Χ~1∑~+_g(v″=0)的时间分辨强度.从荧光强度的对数值给出的直线斜率得到B~1Π_u(v′=5)→Χ~1∑~+_g(v″=0)的有效寿命,由Stern-Volmer方程,得到B~1Π_u(v′=5)→Χ~1∑~+_g(v″=0)的辐射寿命为(45±9)ns.B~1Π_u(v′=5)态与N_2碰撞的猝灭总截面为(9.8±1.5)×10~(-15)cm~2.用类似的方法得到B~1Π_u(v′=4,6)能级的辐射寿命.在不同的N_2气压下,测量B~1Π_u(v′=5,4,6)→Χ~1∑~+_g(v″=0)的时间积分荧光强度,首次得到v′=5→v′=4及v′=5→v′=6的碰撞转移截面分别为(3.9±0.8)×10~(-15) cm~2和(4.1±0.8)×10~(-15)cm~2.  相似文献   

12.
在气体样品池条件下,研究了Cs(6PJ)(Ne、N2)碰撞能量转移过程。用调频半导体激光器激发Cs原子至Cs(6PJ)态,在不简的Ne或N2气压下,直接测量了6P3/2→6S1/2荧光和转移6P1/2、6S1/2荧光。  相似文献   

13.
Cs蒸气中的碰撞能量合并和6P3/2和6P1/2间的激发转移   总被引:2,自引:0,他引:2  
通过激发转移和碰撞能量合并研究了Cs(62P)精细结构混合.单模半导体激光器激发基态Cs原子至6P3/2态,直接荧光是由6P3/2态发射的,敏化荧光是由精细结构碰撞转移和碰撞能量合并产生的.由相对荧光强度得到了转移截面σ(6P3/2→6P1/2)=(1.5±0.5)×10-15cm2,与其它实验结果进行了比较.  相似文献   

14.
利用激光泵浦一吸收技术,研究了在样品池中(T=385 K,H2气压400 Pa)的Rb(5DJ)+H2→RbH+H[x1∑+(υ"=0)]+H光化学反应过程.双光子激发Rb-H2混合蒸气中Rb原子至52D态,荧光中除有泵浦能级发生的直接荧光外,还包含由精细结构碰撞转移产生的敏化荧光,RbH分子是由5D原子与H2间的三体碰撞反应产生的.利用852 nm激光扫描RbH X1∑+(υ"=0→υ'=17)吸收带,△I'和△I"分别表示泵浦5D3/2和5D5/2时的吸收光强.泵浦室温下的纯Rb蒸气至5D3/2或5D5/2态,由于在低密度下52D精细结构混合可略去,故由5D3/2→5P1/2与5D5/2→5P3/2的荧光比得到泵浦率比.解速率方程组,得到5D3/2→5D5/2和5D→5D以外态的碰撞转移截面分别是9.8×10-16和2.0×10-16cm2,Rb(5DJ)+H2→RbH+H的反应截面分别是5.4×10-17(J=3/2)和2.3×10-17cm2(J=5/2),5D3/2与H2的反应活动性大于5D5/2,这与其他实验结果是一致的.  相似文献   

15.
在K原子密度约为0.5~5×1016cm-3的样品池中,脉冲激光710 nm线双光子激发K2基态到高位1Λg态,研究了K2(1Λg)+ K(4S)碰撞转移过程.K原子密度由测量KD2线蓝翼对白光的吸收得到.测量不同K密度下1Λg态发射的时间分辨荧光强度,它是一条指数衰减曲线,由此得到1Λg态的有效寿命,从描绘出的有效寿命倒数与K原子密度关系直线的斜率得到1Λg态总的碰撞猝灭截面为(2.1±0.2)×10-14cm2,从截距得到的辐射寿命为(22±2)ns.测量了K的6S →4P3/2和4D→4P3/2在不同K密度下的时间积分荧光强度,得到了K2(1Λg)+K→K2(11∑ +g)+K(6S,4D)碰撞转移截面为(1.5±0.3)×10-15cm2(对转移到6S)和(8.5±3.0)×10-15cm2(对转移到4D).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号