首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first part of this work, the local singularity of non-smooth dynamical systems was discussed and the criteria for the grazing bifurcation were presented mathematically. In this part, the fragmentation mechanism of strange attractors in non-smooth dynamical systems is investigated. The periodic motion transition is completed through grazing. The concepts for the initial and final grazing, switching manifolds are introduced for six basic mappings. The fragmentation of strange attractors in non-smooth dynamical systems is described mathematically. The fragmentation mechanism of the strange attractor for such a non-smooth dynamical system is qualitatively discussed. Such a fragmentation of the strange attractor is illustrated numerically. The criteria and topological structures for the fragmentation of the strange attractor need to be further developed as in hyperbolic strange attractors. The fragmentation of the strange attractors extensively exists in non-smooth dynamical systems, which will help us better understand chaotic motions in non-smooth dynamical systems.  相似文献   

2.
This paper presents some new ideas to understand the strange attractor fragmentation caused by grazing in non-smooth dynamic systems. The sufficient and necessary conditions for grazing bifurcations in non-smooth dynamic systems are presented. The initial sets of grazing mapping are introduced and the corresponding initial grazing manifolds are discussed. The grazing-induced fragmentation of strange attractors of chaotic motions in non-smooth dynamical systems is presented. The mathematical theory for such a fragmentation of strange attractors should be further developed.  相似文献   

3.
This paper is concerned with the generation of multi-stripe chaotic attractors. Simple periodic nonlinear functions are employed to transform the original chaotic attractors to a pattern with multiple “parallel” or “rectangular” stripes. The relationship between the system parameters related to some periodic functions and the shape of the generated attractor is analyzed. Theoretic analysis about the underlying mechanism of generating the parallel stripes in the attractors is given. A general creation mechanism of multi-stripe attractors of the Lorenz system and other well-known chaotic systems is derived from the proposed unified approach.  相似文献   

4.
In this paper we provide numerical evidence, via graphics generated with the help of computer simulations, that switching the control parameter of a dynamical system belonging to a class of fractional-order systems in a deterministic way, one obtains an attractor which belongs to the class of all admissible attractors of the considered system. For this purpose, while a multistep numerical method for fractional-order differential equations approximates the solution to the mathematical model, the control parameter is switched periodically every few integration steps. The switch is made inside of a considered set of admissible parameter values. Moreover, the synthesized attractor matches the attractor obtained with the control parameter replaced with the averaged switched parameter values. The results are verified in this paper on a representative system, the fractional-order Lü system. In this way we were able to extend the applicability of the algorithm presented in earlier papers using a numerical method for fractional differential equations.  相似文献   

5.
This paper introduces a new 3-D quadratic autonomous system, which can generate two coexisting single-wing chaotic attractors and a pair of diagonal double-wing chaotic attractors. More importantly, the system can generate a four-wing chaotic attractor with very complicated topological structures over a large range of parameters. Some basic dynamical behaviors and the compound structure of the new 3-D system are investigated. Detailed bifurcation analysis illustrates the evolution processes of the system among two coexisting sinks, two coexisting periodic orbits, two coexisting single-wing chaotic attractors, major and minor diagonal double-wing chaotic attractors, and a four-wing chaotic attractor. Poincaré-map analysis shows that the system has extremely rich dynamics. The physical existence of the four-wing chaotic attractor is verified by an electronic circuit. Finally, spectral analysis shows that the system has an extremely broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.  相似文献   

6.
For low values of the viscosity coefficient, Burgers equation can develop sharp discontinuities, which are difficult to simulate in a computer. Oscillations can occur by discretization through spectral collocation methods, due to Gibbs phenomena. Under a dynamic point of view, these instabilities are related to bifurcations arising to the discretized equation. For different values of discretized points, herein a study is performed of the dynamics and bifurcations occurring in the spectral solutions of Burgers equation with symmetry. Several phenomena are observed, from limit cycles, strange attractors to the presence of bistability with two periodic attractors, with a periodic attractor and a strange attractor and with two strange attractors. Also, other stable equilibrium points can occur, diverse from the ones corresponding to the solution of Burgers equation.  相似文献   

7.
Strange non-chaotic, strange chaotic and quasiperiodic attractors are demonstrated to exist for a system of two non-linear coupled oscillators with almost periodic excitations. For same parameter values a transition from a strange non-chaotic to a quasiperiodic attractor is presented, whereas for other parameter values a shift from the strange chaotic attractor to a quasiperiodic one is found.  相似文献   

8.
In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra.  相似文献   

9.
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the union of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an autonomous map, properties that the nonautonomous attractor inherits from the autonomous attractor are discussed. Examples from population biology are presented.  相似文献   

10.
We investigate the long term behavior in terms of finite dimensional global and exponential attractors, as time goes to infinity, of solutions to a semilinear reaction–diffusion equation on non-smooth domains subject to nonlocal Robin boundary conditions, characterized by the presence of fractional diffusion on the boundary. Our results are of general character and apply to a large class of irregular domains, including domains whose boundary is Hölder continuous and domains which have fractal-like geometry. In addition to recovering most of the existing results on existence, regularity, uniqueness, stability, attractor existence, and dimension, for the well-known reaction–diffusion equation in smooth domains, the framework we develop also makes possible a number of new results for all diffusion models in other non-smooth settings.  相似文献   

11.
Random Point Attractors Versus Random Set Attractors   总被引:2,自引:0,他引:2  
The notion of an attractor for a random dynamical system withrespect to a general collection of deterministic sets is introduced.This comprises, in particular, global point attractors and globalset attractors. After deriving a necessary and sufficient conditionfor existence of the corresponding attractors it is proved thata global set attractor always contains all unstable sets ofall of its subsets. Then it is shown that in general randompoint attractors, in contrast to deterministic point attractors,do not support all invariant measures of the system. However,for white noise systems it holds that the minimal point attractorsupports all invariant Markov measures of the system.  相似文献   

12.
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.  相似文献   

13.
The dynamics of a vibrational mechanism with an energy source of limited power is considered. A system of two degrees of freedom is reduced to a system of the Lorenz type by the method of averaging. The existence of one of the types of chaotic attractors in a dynamical system which is a vibrational mechanism, that is, a Lorenz attractor, is established by this. The existence of a Feigenbaum attractor and intermittence is also established. Chaotic limit sets determine the chaotic behaviour of the instantaneous frequency of rotation of an asynchronous motor. The qualitative patterns of the rotational characteristic are constructed for different values of the parameters of the system and a physical interpretation of the results is given.  相似文献   

14.
There are different non-equivalent definitions of attractors in the theory of dynamical systems. The most common are two definitions: the maximal attractor and the Milnor attractor. The maximal attractor is by definition Lyapunov stable, but it is often in some ways excessive. The definition of Milnor attractor is more realistic from the physical point of view. The Milnor attractor can be Lyapunov unstable though. One of the central problems in the theory of dynamical systems is the question of how typical such a phenomenon is. This article is motivated by this question and contains new examples of so-called relatively unstable Milnor attractors. Recently I. Shilin has proved that these attractors are Lyapunov stable in the case of one-dimensional fiber under some additional assumptions. However, the question of their stability in the case of multidimensional fiber is still an open problem.  相似文献   

15.
We study existence of attractors for weak solutions of the regularized model for viscoelastic medium motion with memory in non-autonomous case. We apply the theory of trajectory attractors for non-invariant trajectory spaces and prove the existence of trajectory attractor, global attractor, uniform trajectory attractor, and uniform global attractor for this system.  相似文献   

16.
In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh–Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above.  相似文献   

17.
In this paper, a mathematical model consisting of two preys one predator with Beddington–DeAngelis functional response is proposed and analyzed. The local stability analysis of the system is carried out. The necessary and sufficient conditions for the persistence of three species food web model are obtained. For the biologically reasonable range of parameter values, the global dynamics of the system has been investigated numerically. Number of bifurcation diagrams has been obtained; Lyapunov exponents have been computed for different attractor sets. It is observed that the model has different types of attractors including chaos.  相似文献   

18.
A general bienzymatic cyclic system including two autocatalytic loops is studied and used as a basic design principle for modelling extracellular matrix turnover. Using classical enzyme kinetic rates, the model is described by a set of four ordinary differential equations and numerically studied by bifurcation diagrams and Poincaré sections. We observe limit-cycle oscillations and chaotic behaviors arising from period-doubling cascades or intermittency. Chaotic oscillations originate from distinct strange attractors that undergo boundary and internal crisis. For some parameter values, the system presents several bistable areas, where a limit cycle coexists with another one or with a strange attractor. The dynamics are qualitatively modified when the weight of the autocatalytic loops on the system varies, resulting in the change in the number of attractors.  相似文献   

19.
Based on the consideration of Boolean dynamics, it has been hypothesized that cell types may correspond to alternative attractors of a gene regulatory network. Recent stochastic Boolean network analysis, however, raised the important question concerning the stability of such attractors. In this paper a detailed numerical analysis is performed within the framework of Langevin dynamics. While the present results confirm that the noise is indeed an important dynamical element, the cell type as represented by attractors can still be a viable hypothesis. It is found that the stability of an attractor depends on the strength of noise related to the distance of the system to the bifurcation point and it can be exponentially stable depending on biological parameters.  相似文献   

20.
In this paper, we present families of piecewise linear systems which are controlled by a continuous piecewise monoparametric control function for the generation of monoparametric families of multi-scroll attractors. Thus, the maximum range of values that the parameter set can take in order to preserve the useful dynamics for generating of multi-scroll attractors is found and it will be called maximal robust dynamics interval. This class of dynamical systems is the result of combining two or more unstable “one-spiral” trajectories. We give necessary and sufficient conditions in order to preserve multi-scroll attractors in terms of a parameter, i.e., a family of multi-scroll attractors is generated by means of a family of switching systems with multiple monoparametric companion matrices. Lastly, we provide an example to show how the developed theory works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号