首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

2.
The unsymmetrical diphosphinomethane ligand Ph(2)PCH(2)P(NC(4)H(4))(2) L has been prepared from the reaction of Ph(2)PCH(2)Li with PCl(NC(4)H(4))(2). The diphenylphosphino group can be selectively oxidized with sulfur to give Ph(2)P(S)CH(2)P(NC(4)H(4))(2) 1. The reaction of L with [MCl(2)(cod)] (M = Pd, Pt) gives the chelate complexes [MCl(2)(L-kappa(2)P,P')] (2, M = Pd; 3, M = Pt) in which the M-P bond to the di(N-pyrrolyl)phosphino group is shorter than that to the corresponding diphenylphosphino group. However, the shorter Pd-P bond is cleaved on reaction of 2 with an additional 1 equiv of L to give [PdCl(2)(L-kappa(1)P)(2)] 4. Complex 4 reacts with [PdCl(2)(cod)] to regenerate 2, and with [Pd(2)(dba)(3)].CHCl(3) to give the palladium(I) dimer [Pd(2)Cl(2)(mu-L)(2)] 5, which exists in solution and the solid state as a 1:1 mixture of head-to-head (HH) and head-to-tail (HT) isomers. The palladium(II) dimer [Pd(2)Cl(2)(CH(3))(2)(mu-L)(2)] 6, formed by the reaction of [PdCl(CH(3))(cod)] with L, also exists in solution as a mixture of HH and HT isomers, although in this case the HT isomer prevails at low temperature and crystallizes preferentially. Complex 6 reacts with TlPF(6) to give the A-frame complex [Pd(2)(CH(3))(2)(mu-Cl)(mu-L)(2)]PF(6) 7. The reaction of L with [RuCp*(mu(3)-Cl)](4) leads to the dimer [Ru(2)Cp*(2)(mu-Cl)(2)(mu-L)] 8, for which the enthalpy of reaction has been measured. The reaction of L with [Rh(mu-Cl)(cod)](2) gives a mixture of compounds from which the dimer [Rh(2)(mu-Cl)(cod)(2)(mu-L)]PF(6) 9 can be isolated. The crystal structures of 2.CHCl(3), 3.CH(2)Cl(2), 4, 5.(1)/(4)CH(2)Cl(2), 6, 7.2CH(2)Cl(2), 8, and 9.CH(2)Cl(2) are reported.  相似文献   

3.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

4.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

5.
trans-Rh(CO)(Cl)(P((CH(2))(14))(3)P) is prepared from trans-Rh(CO)(Cl)(P((CH(2))(6)CH[double bond, length as m-dash]CH(2))(3))(2) by a metathesis/hydrogenation sequence, and converted by substitution or addition reactions to Rh(CO)(I), Rh(CO)(2)(I), Rh(CO)(NCS), and Rh(CO)(Cl)(Br)(CCl(3)) species; the Rh(CO)(Cl) and Rh(CO)(I) moieties rapidly rotate within the cage-like diphosphine, but the other rhodium moieties do not.  相似文献   

6.
The slightly yellow polymeric complexes [Au(2)Cl(2)(P(2)pz)(3)](n), 1 x 6CHCl(3), (P(2)pz is 3,6-bis(diphenylphosphino)pyridazine) and [[Au(2)(P(2)pz)(3)](PF(6))(2)](n), 2, are prepared by the stoichiometric reaction of AuCl(tht) (tht is tetrahydrothiophene) and P(2)pz in either dichloromethane or dichloromethane/methanol, respectively. Addition of 2 equiv of AuCl(tht) to a dichloromethane solution of 1 equiv of P(2)pz generates the simple (AuCl)(2)(P(2)pz) compound, 3. Compound 3 contains nearly linear P-Au-Cl units with intermolecular Au.Au separations of 3.570 A. Au(2)I(2)(P(2)pz)(3), 4, is prepared by reacting excess NaI with 2 in a dichloromethane/methanol mixture. Characterization of 1, 2, and 4 by X-ray crystallography confirms the 2:3 gold/ligand ratio of all three complexes. The coordination polymer 1 maintains a high degree of solvation in the solid-state with three chloroform adducts hydrogen-bonded to the chloride ligand on each gold atom. These chloroform molecules are sandwiched between the two-dimensional polymeric sheets of 1. The crystal structure of 4 reveals an empty, iodide-capped metallocryptand cage with the tetrahedrally distorted gold atoms and the nitrogen atoms on the pyridazine rings directed away from the center of the cavity. No metal ion encapsulation was observed for complex 4. Complex 2 forms one-dimensional arrays of [Au(2)(P(2)pz)(2)](2+) metallomacrocycles connected to each other by a third P(2)pz ligand. The electronic absorption spectra (CH(2)Cl(2)) of 1-4 show broad, nearly featureless absorption bands that tail into the visible with pi-pi bands at 296 nm and discernible shoulders at 314 nm for 2 and 334 nm for 3. Excitation into the low energy band of 2 produces only a modest emission in solution at 540 nm (lambda(ex) 468 nm) and 493 nm (lambda(ex) 403 nm). Under identical conditions, the P(2)pz ligand also emits at 540 and 493 nm.  相似文献   

7.
The new 2-phenylthiocarbamoyl-1,3-dimesitylimidazolium inner salt (IMes·CSNPh) reacts with [AuCl(L)] in the presence of NH(4)PF(6) to yield [(L)Au(SCNPh·IMes)](+) (L = PMe(3), PPh(3), PCy(3), CNBu(t)). The carbene-containing precursor [(IDip)AuCl] reacts with IMes·CSNPh under the same conditions to afford the complex [(IDip)Au(SCNPh·IMes)](+) (IDip = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Treatment of the diphosphine complex [(dppm)(AuCl)(2)] with one equivalent of IMes·CSNPh yields the digold metallacycle, [(dppm)Au(2)(SCNPh·IMes)](2+), while reaction of [L(2)(AuCl)(2)] with two equivalents of IMes·CSNPh results in [(L(2)){Au(SCNPh·IMes)}(2)](2+) (L(2) = dppb, dppf, or dppa; dppb = 1,4-bis(diphenylphosphino)butane, dppf = 1,1'-bis(diphenylphosphino)ferrocene, dppa = 1,4-bis(diphenylphosphino)acetylene). The homoleptic complex [Au(SCNPh·IMes)(2)](+) is formed on reaction of [AuCl(tht)] (tht = tetrahydrothiophene) with two equivalents of the imidazolium-2-phenylthiocarbamoyl ligand. This product reacts with AgOTf to yield the mixed metal compound [AuAg(SCNPh·IMes)(2)](2+). Over time, the unusual trimetallic complex [Au(AgOTf)(2)(SCNPh·IMes)(2)](+) is formed. The sulfur-oxygen mixed-donor ligands IMes·COS and SIMes·COS (SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) were used to prepare [(L)Au(SOC·IMes)](+) and [(L)Au(SOC·SIMes)](+) from [(L)AuCl] (L = PPh(3), CN(t)Bu). The bimetallic examples [(dppf){Au(SOC·IMes)}(2)](2+) and [(dppf){Au(SOC·SIMes)}(2)](2+) were synthesized from the reaction of [(dppf)(AuCl)(2)] with the appropriate ligand. Reaction of [(tht)AuCl] with one equivalent of IMes·COS or SIMes·COS yields [Au(SOC·IMes)(2)](+) and [Au(SOC·SIMes)(2)](+), respectively. The compounds [(Ph(3)P)Au(SCNPh·IMes)]PF(6), [(Cy(3)P)Au(SCNPh·IMes)]PF(6) and [Au(AgOTf)(2)(SCNPh·IMes)(2)]OTf were characterized crystallographically.  相似文献   

8.
By reaction of NBu(4)[Au(C(6)Cl(5))(2)] with TlPF(6) in acetone the complex [Au(2)Tl(2)(C(6)Cl(5))(4)].(CH(3))(2)C=O is obtained, which shows a butterfly type arrangement of metals through short Au(I)-Tl(I) and Tl(I)-Tl(I) interactions. The last one is likely to be responsible for its luminescence behavior.  相似文献   

9.
The reaction of the phosphine thiosemicarbazone ligands HLPH and HLPMe with Au(I) ions yields the gold complexes [Au(3)(HLPH)(2)Cl(2)]Cl·2MeOH (1·2MeOH) and [Au(2)(HLPMe)Cl(2)] (2). The structures determined by X Ray diffraction, [Au(3)(HLPH)(2)Cl(2)]Cl·4MeOH (1·4MeOH) and [Au(2)(HLPMe)Cl(2)](2) (2), are the first examples of gold(I) thiosemicarbazone clusters showing aurophilicity. The structure of the trinuclear cation 1 contains the Au(1) atom located in an inversion centre, being connected to another gold(I) atom, Au(2), through a phosphino thiosemicarbazone molecule which acts as a S,P-bridging ligand. Additionally, every gold(I) atom in the trinuclear cation 1 assembles into trinuclear linear cluster units by means of close gold-gold interactions, being connected through the crystal cell in a 2D zigzag mode. The crystal structure of [Au(2)(HLPMe)Cl(2)](2) (2) contains one discrete molecule [(AuCl)(2)(HLPMe)] in the asymmetric unit, which is further assembled into tetranuclear [(AuCl)(2)(HLPMe)](2) units by means of close gold-gold interactions. Both clusters are highly luminescent in solution.  相似文献   

10.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

11.
The gold(I) selenolate compound [Au(2)(SePh)(2)(mu-dppf)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) has been prepared by reaction of [Au(2)Cl(2)(mu-dppf)] with PhSeSiMe(3) in a molar ratio 1:2. This complex reacts with gold(I) or gold(III) derivatives to give polynuclear gold(I)-gold(I) or gold(I)-gold(III) complexes of the type [Au(4)(mu-SePh)(2)(PPh(3))(2)(mu-dppf)](OTf)(2), [Au(3)(C(6)F(5))(3)(mu-SePh)(2)(mu-dppf)], or [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)], with bridging selenolate ligands. The reaction of [Au(2)(SePh)(2)(mu-dppf)] with 1 equiv of AgOTf leads to the formation of the insoluble Ag(SePh) and the compound [Au(2)(mu-SePh)(mu-dppf)]OTf. The complexes [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)] and [Au(2)(mu-SePh)(mu-dppf)]OTf (two different solvates) have been characterized by X-ray diffraction studies and show the presence of weak gold(I)-gold(III) interactions in the former and intra- and intermolecular gold(I)-gold(I) inter-actions in the later.  相似文献   

12.
Gold(I) complexes of imidazole and thiazole-based diphos type ligands were prepared and their potential as chemotherapeutics investigated. Depending on the ligands employed and the reaction conditions complexes [L(AuCl)(2)] and [L(2)Au]X (X = Cl, PF(6)) are obtained. The ligands used are diphosphanes with azoyl substituents R(2)P(CH(2))(2)PR(2) {R = 1-methylimidazol-2-yl (1), 1-methylbenzimidazol-2-yl (4), thiazol-2-yl (5) and benzthiazol-2-yl (6)} as well as the novel ligands RPhP(CH(2))(2)PRPh {R = 1-methylimidazol-2-yl (3)} and R(2)P(CH(2))(3)PR(2) {R = 1-methylimidazol-2-yl (2)}. The cytotoxic activity of the complexes was assessed against three human cancer cell lines and a rat hepatoma cell line and correlated to the lipophilicity of the compounds. The tetrahedral gold complexes [(3)(2)Au]PF(6) and [(5)(2)Au]PF(6) with intermediate lipophilicity (logD(7.4) = 0.21 and 0.25) showed significant cytotoxic activity in different cell lines. Both compounds induce apoptosis and inhibit the enzymes thioredoxin reductase and glutathione reductase.  相似文献   

13.
Diphosphine ligands bearing highly symmetric, bulky substituents at a stereogenic P atom were prepared, exploiting established protocols, which include the use of chiral synthons such as 3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane (3a) and phenylmethylchlorophosphine borane (10) and the enantioselective deprotonation of dimethylarylphosphine boranes. However, only (Bu(t)())(Me)PCH(2)CH(2)P(Bu(t)Me (8a) could be prepared from 3a. The diphosphines (S,S)-1,2-bis(mesitylmethylphosphino)ethane, ((S,S)-8b) and (S,S)-1,2-bis(9-anthrylmethylphosphino)ethane ((S,S)-8c), which contain 2,6-disubstituted aryl P-substituents, were prepared by Evans' sparteine-assisted enantioselective deprotonation of P(Ar)(Me)(2)(BH(3)) (Ar = mesityl or 9-anthryl), but the enantioselectivity did not exceed 37% ee. The asymmetrically substituted, methylene-bridged diphosphine (2R,4R)-(Ph)(CH(3))PCH(2)P(Mes)(CH(3)) ((2R,4R)-12) (Mes = mesityl) was prepared by the newly developed stereospecific reaction of the enantiomerically pure chlorophosphine borane PCl(Ph)(Me)(BH(3)) (10) with the racemic, monolithiated dimethylmesitylphosphine borane P(Mes)(Me)(CH(2)Li)(BH(3)). Diastereomerically pure (2R,4R)-12 was obtained with 86% ee. The rhodium(I) derivatives [Rh(COD)(P-P)]BF(4) containing the diphosphine ligands 8a, 8b, and 12, as well as the previously reported (S,S)-1,2-bis(1-naphthylphenylphosphino)ethane ((S,S)-8d), were prepared and tested in the enantioselective catalytic hydrogenation of acetamidocinnamates. The best catalytic result (98.6% ee) was obtained with [Rh(COD)(8d)](+) as catalyst and methyl Z-alpha-acetamidocinnamate as substrate. Some of the catalytic results are discussed in terms of the preferred conformations of the substituents at phosphorus, as calculated by molecular modeling.  相似文献   

14.
Reactions of a gold(i) thiolate complex [Au(Tab)(2)](2)(PF(6))(2) (Tab = 4-(trimethylammonio)benzenethiolate) with equimolar 1,2-bis(diphenylphosphine)ethane (dppe), 1,3-bis-(diphenylphosphine)propane (dppp) or 1,4-bis-(diphenylphosphine)butane (dppb) in MeOH-DMF-CH(2)Cl(2) gave rise to three polymeric complexes [Au(2)(Tab)(2)(dppe)](2)(PF(6))(4)·2MeOH (1·2MeOH), [Au(2)(Tab)(2)(dppp)]Cl(2)·0.5MeOH·4H(2)O (2·0.5MeOH·4H(2)O), and [Au(4)(μ-Tab)(2)(Tab)(2)(dppb)](PF(6))(4)·4DMF (3·4DMF), respectively. Analogous reaction of 1 with dppb in DMF/C(2)H(4)Cl(2) produced one tetranuclear complex [Au(2)(μ-Tab)(Tab)(2)](2)Cl(4)·2DMF·4H(2)O (4·2DMF·4H(2)O). Complexes 1-4 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR and single crystal X-ray analysis. Compounds 1 and 2 consist of [Au(Tab)](2) dimeric fragments that are bridged by dppe or dppp ligands to form a 1D linear chain extending along the a axis. For 3, each [Au(4)(Tab)(2)(μ-Tab)(2)] fragment is linked by a pair of dppb ligands to afford another 1D chain extending along the c axis. For 4, the four [Au(Tab)](+) fragments are linked by two Au-Au bonds and two doubly bridging Tab ligands to form a {[Au(Tab)](4)(μ-Tab)(2)} chair-like cyclohexane structure. Hydrogen-bonding interactions in 2 and 4 lead to the formation of interesting 2D hydrogen-bonded networks. The luminescent properties of 1-4 in solid state were also investigated.  相似文献   

15.
Na[BH(pz)(3)] and Na[AuCl(4)].2H(2)O react in water (1:1) to give [Au[kappa(2)-N,N'-BH(pz)(3)]Cl(2)] (1) or, in the presence of NaClO(4) (2:1:1), the cationic complex [Au[kappa(2)-N,N'-BH(pz)(3)](2)]ClO(4) (2). The reactions of Na[B(pz)(4)] with the cyclometalated gold complexes [AuRCl(2)] and NaClO(4) (1:1:1) produce [Au[kappa(2)-N,N'-B(pz)(4)](R)]ClO(4) [R = kappa(2)-C,N-C(6)H(4)CH(2)NMe(2)-2 (3)] or [Au[kappa(2)-N,N'-B(pz)(4)](R)Cl] [R = C(6)H(3)(N=NC(6)H(4)Me-4')-2-Me-5 (4)], respectively, although 4 is better obtained in the absence of NaClO(4). The crystal structures of 1 and 3.CHCl(3) are reported. Both complexes display the gold center in square planar environments, two coordination sites being occupied by the chelating poly(pyrazolyl)borate ligands.  相似文献   

16.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

17.
The diphosphine 2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)OH (1) reacts with [OsCl(2)(PPh(3))(3)] in presence of an excess of triethylamine to yield the isomeric para-quinone methide derivatives [Os{4-(CH(2))-1-(O)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))] (2 and 3), which differ in the positions of the mutually trans hydride and chloride ligands. Complex 2 reacts with CO to afford the dicarbonyl species [Os{1-(O)-2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(CO)(2)] (4), which results from hydride insertion into the quinonic double bond. Protonation of 2 and 3 leads to the formation of the methylene arenium derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))][OSO(2)CF(3)] (5 a). The diphosphine 1 reacts with [OsCl(2)(PPh(3))(3)] at 100 degrees C under H(2) to afford [Os{1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H(2))(PPh(3))] (6), a PCP pincer complex resulting formally from C(sp(2))--C(sp(3)) cleavage of the C--CH(3) group in 1. C--C hydrogenolysis resulting in the same complex is achieved by heating 2 under H(2) pressure. Reaction of the diphosphine substrate with [OsCl(2)(PPh(3))(3)] under H(2) at lower temperature allows the observation of a methylene arenium derivative resulting from C--H activation, [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(2)(H)] (7). This compound reacts with PPh(3) in toluene to afford the ionic derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))]Cl (5 b). X-ray diffraction studies have been carried out on compounds 2, 3, 4, 5 b, 6, and 7, which allows the study of the structural variations when going from methylene arenium to quinone methide derivatives.  相似文献   

18.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

19.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

20.
The first soft donor adducts of TiF(4), [TiF(4)(diphosphine)] (diphosphine = o-C(6)H(4)(PMe(2))(2), R(2)P(CH(2))(2)PR(2), R = Me or Et) have been prepared from [TiF(4)(MeCN)(2)] and the diphosphines in rigorously anhydrous CH(2)Cl(2), as extremely moisture sensitive yellow solids, and characterised by multinuclear NMR ((1)H, (31)P, (19)F), IR and UV/vis spectroscopy. The crystal structure of [TiF(4){Et(2)P(CH(2))(2)PEt(2)}] has been determined and shows a distorted six-coordinate geometry with disparate Ti-F(transF) and Ti-F(transP) distances and long Ti-P bonds. Weaker soft donor ligands including Ph(3)P, Ph(2)P(CH(2))(2)PPh(2), o-C(6)H(4)(PPh(2))(2), Ph(2)As(CH(2))(2)AsPh(2), o-C(6)H(4)(AsMe(2))(2) and (i)PrS(CH(2))(2)S(i)Pr do not form stable complexes with TiF(4), although surprisingly, fluorotitanate(IV) salts of the previously unknown doubly protonated ligand cations [LH(2)][Ti(4)F(18)] (L = o-C(6)H(4)(PPh(2))(2), o-C(6)H(4)(AsMe(2))(2) and (i)PrS(CH(2))(2)S(i)Pr) are formed in some cases as minor by-products. The structure of [o-C(6)H(4)(PPh(2)H)(2)][Ti(4)F(18)] shows the first authenticated example of a diprotonated o-phenylene-diphosphine. The synthesis and full spectroscopic characterisation are reported for a range of TiF(4) adducts with hard N- or O-donor ligands for comparison purposes, along with crystal structures of [TiF(4)(thf)(2)], [TiF(4)(Ph(3)EO)(2)]·2CH(2)Cl(2) (E = P or As), and [TiF(4)(bipy)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号