首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free energy of a stressed crystal is assumed to consist of elastic strain energy and surface energy, and the chemical potential for surface diffusion at constant temperature is obtained under this assumption. A gradient in chemical potential results in diffusive mass transport along the surface. The result is applied in considering the phenomena of instability of a flat surface in a stressed material under fluctuations in surface shape, and the transient evolution of surface roughness due to an initial perturbation in the nearly flat free surface of the material, both under plane strain conditions.  相似文献   

2.
The elastic strain and stress fields associated with nanoscale compositional modulation in an anisotropic epitaxial film on an anisotropic substrate are obtained by using Stroh formalism and the Eshelby-type inclusion method. The composition of the epitaxial film is considered to periodically fluctuate in a surface soft mode, with the amplitude of the composition modulation maximal near the growing surface and decreasing exponentially into the film. It has been experimentally observed that the composition modulation affects the formation of a new type of crystal defects, i.e., misfit dislocation dipoles, in III–V compound semiconductor materials. The formation energy of a misfit dislocation dipole under the elastic fields due to the composition modulation is calculated in this study. It is composed of the core and self energies of two dislocations, the interaction energy between two dislocations, and the interaction energies between the composition modulation and two dislocations. Numerical calculations are performed for a dislocation dipole in a lattice-matched Ga0.5In0.5P film on a GaAs substrate.  相似文献   

3.
The morphological evolution of strained films is of technological importance to microelectronics and nanotechnology. The morphological instability of a bilayer system is analyzed, consisting of an elastic film and an elastic substrate with a misfit strain on the coherent interface. A kinetic model is derived by considering the morphological fluctuations of different perturbation amplitudes along both the free surface and the interface and the coupling effect between the film and the substrate. The couplings include the misfit strain, surface/interface energy, and surface/interface diffusion, which determine the morphological instability of the system. A quadratic dispersion relationship is established for the growth rate of the longitudinal surface and interfacial perturbations along the free surface and the interface, respectively. The propagation of the surface perturbations is revealed from the free surface to the interface, and the characteristic frequencies are identified for the initiation of the morphological instability.  相似文献   

4.
We discuss the epitaxial growth of an elastic film, allowing for stress and diffusion within the film surface as well as nonequilibrium interactions between the film and the vapor. Our approach, which relies on recent ideas concerning configurational forces, is based on: (i) standard (Newtonian) balance laws for forces and moments together with an independent balance law for configurational forces; (ii) atomic balances, one for each species of mobile atoms; (iii) a mechanical version of the second law that accounts for temporal changes in free energy, energy flows due to atomic transport, and power expended by both standard and configurational forces; (iv) thermodynamically consistent constitutive relations for the film surface and for the interaction between the surface and the vapor environment. The normal component of the configurational force balance at the surface represents a generalization, to a dynamical context involving dissipation, of a condition that would arise in equilibrium by considering variations of the total free energy with respect to the configuration of the film surface. Our final results consist of partial differential equations that govern the evolution of the film surface.  相似文献   

5.
Biaxial strain and pure shear of a thin film are analysed using a strain gradient plasticity theory presented by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406]. Constitutive equations are formulated based on the assumption that the free energy only depends on the elastic strain and that the dissipation is influenced by the plastic strain gradients. The three material length scale parameters controlling the gradient effects in a general case are here represented by a single one. Boundary conditions for plastic strains are formulated in terms of a surface energy that represents dislocation buildup at an elastic/plastic interface. This implies constrained plastic flow at the interface and it enables the simulation of interfaces with different constitutive properties. The surface energy is also controlled by a single length scale parameter, which together with the material length scale defines a particular material.Numerical results reveal that a boundary layer is developed in the film for both biaxial and shear loading, giving rise to size effects. The size effects are strongly connected to the buildup of surface energy at the interface. If the interface length scale is small, the size effect vanishes. For a stiffer interface, corresponding to a non-vanishing surface energy at the interface, the yield strength is found to scale with the inverse of film thickness.Numerical predictions by the theory are compared to different experimental data and to dislocation dynamics simulations. Estimates of material length scale parameters are presented.  相似文献   

6.
本文旨在研究弯曲衬底上应变异质外延薄膜的表面非线性演化行为,研究采用了基于Eshelby等效方法的相场微弹性模型来模拟二维应变 薄膜/衬底系统的形态失稳。建立了关于等效特征应变和长程序参量的自由能泛函,数值求解了时间相关的Ginzburg-Landau动力学方程。系统自由能包括化学能,弹性应变能以及薄膜、衬底与真空相两两之界面能。跟踪了全时的形态演化过程,给出了指定时刻的量子点形态轮廓图。结果表明,量子点倾向于沉积在弯曲衬底的波谷处,波谷处是能量有利位置,量子点在此处比在波峰处更加稳定。本文所做的相场模拟可以用来预测量子点形成的轮廓、尺寸和位置,可以为控制和生成周期性自组装表面纳米结构提供理论指导。  相似文献   

7.
When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface instability induced by the van der Waals force in a soft elastic thin film perfectly bonded to a rigid substrate is investigated theoretically using the bifurcation theory of elastic structures. The analytical solution is derived for the critical condition of spinodal surface morphology instability by accounting for the competition of the van der Waals interaction energy, elastic strain energy and surface energy. Detailed examinations on the effect of surface energy, thickness and elastic properties of the film show that the characteristic wavelength of the deformation bifurcation mode depends on the film thickness via an exponential relation, with the power index in the range from 0.749 to 1.0. The theoretical solution has a good agreement with relevant experiment results.  相似文献   

8.
Force multipoles are employed to represent various types of defects and physical phenomena in solids: point defects (interstitials, vacancies), surface steps and islands, proteins on biological membranes, inclusions, extended defects, and biological cell interactions among others. In the present work, we (i) as a prototype simple test case, conduct quantum mechanical calculations for mechanics of defects in graphene sheet and in parallel, (ii) formulate an enriched continuum elasticity theory of force dipoles of various anisotropies incorporating up to second gradients of strain fields (thus accounting for nonlocal dispersive effects) instead of the usual dispersion-less classical elasticity formulation that depends on just the strain (c.f. Peyla, P., Misbah, C., 2003. Elastic interaction between defects in thin and 2-D films. Eur. Phys. J. B. 33, 233-247). The fundamental Green's function is derived for the governing equations of second gradient elasticity and the elastic self and interaction energies between force dipoles are formulated for both the two-dimensional thin film and the three-dimensional case. While our continuum results asymptotically yield the same interaction energy law as Peyla and Misbah for large defect separations (∼1/rn for defects with n-fold symmetry), the near-field interactions are qualitatively far more complex and free of singularities. Certain qualitative behavior of defect mechanics predicted by atomistic calculations are well captured by our enriched continuum models in contrast to classical elasticity calculations. For example, consistent with our atomistic calculations of defects in isotropic graphene, even two dilation centers show a finite interaction (as opposed to classical elasticity that predicts zero interaction). We explicitly find the physically consistent result that the self-energy of a defect is equivalent to half the interaction energy between two identical defects when they “merge” into each other. The atomistic, classical elastic and the enriched continuum predictions are thoroughly compared for two types of defects in graphene: Stone-Wales and divacancy.  相似文献   

9.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms.  相似文献   

10.
We study the influence of heterogeneities located near a planar surface on the elastic response of a three-dimensional elastic medium. These heterogeneities can be either reinforcements, like steel reinforcements in concrete, or defects, like micro-cracks periodically distributed. We prove that their influence is of the second order from an energetic viewpoint. Then, we propose an ??up to second order effective model?? in which the influence of the heterogeneities is given by a surface energy contribution involving both the jump of displacement across the surface and the tangential strain components on the surface. The effective coefficients entering in the definition of the surface energy are obtained by solving ??elementary?? elastic problems formulated on an infinite representative cell containing the defects. We analyze this model, in particular the properties of the effective surface coefficients, and establish its coherence with limit models previously described in the literature for stiff or soft interfaces. This approach is finally applied to several kinds of heterogeneities.  相似文献   

11.
为研究不同化学溶液对砂岩力学性质及能量特征的影响,采用不同的水化学溶液对砂岩试样进行腐蚀,利用WDT-1500多功能材料试验机对化学腐蚀后饱和状态与自然状态的试样进行常规三轴压缩试验。试验结果表明:化学腐蚀后砂岩试样的强度及其抗变形能力呈现不同程度的劣化;化学腐蚀后砂岩试样的峰值应变小于相同围压下自然状态试样的峰值应变,与单轴压缩条件下不同,这可能是由于围压和化学溶液共同作用的结果;砂岩试样的似软化系数与围压之间呈现负相关性,同时,其降低速率随着围压的增加而降低。砂岩试样峰值前吸收的能量绝大部分是以可释放弹性应变能Ue形式储存下来的,而化学腐蚀后砂岩试样以Ue形式储存下来的能量占其总吸收应变能的百分比却有所下降;同时,围压与试样的可释放应变能/应变能比值之间呈负相关性,而与耗散能/应变能比值存在正相关性;岩石脆性指标修正值呈现不同程度的增加,试样的脆性减弱延性增强,即塑性变形增加,塑性变形与耗散能之间具有很好的线性特征。溶液的pH值、浓度和化学成分对砂岩试样峰值处各部分应变能的影响显著。  相似文献   

12.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms.  相似文献   

13.
陕耀  苏瓅  周顺华 《力学学报》2020,52(1):111-123
物理学中,摄动源在非均匀介质中或非均匀介质附近匀速直线运动所产生的能量辐射现象称为渡越辐射.列车沿轨道运行,由轮轨接触产生的弹性波在非均匀轨道和基础中传播将发生渡越辐射,而轨道和基础的非均匀性集中体现在不同轨道基础之间的过渡段(如路桥过渡段、桥隧过渡段或有砟-无砟轨道过渡段).为研究车致弹性波在过渡段中引发的渡越辐射现象,本文以典型高速铁路路桥过渡段结构形式为依据,建立了二维平面应力渡越辐射能计算模型.其中,两个材料参数不同的半无限弹性层由一倾斜界面耦合,底端固定,上表面自由,一个集中载荷在自由表面上匀速运动.界面两侧弹性体中的波动方程均分解为本征场、自由场两个部分分别求解,其中自由场波动方程采用分离变量法数值求解.通过模型求解得到了不同载荷移动速度和界面倾斜角度条件下的渡越辐射能及界面附近应变能密度.结果表明,渡越辐射能的大小随载荷移动速度增大单调非线性增大,移动载荷速度达到刚度较大一侧介质表面波速的74%时产生的渡越辐射能就将超过载荷本身激发的本征场应变能;界面倾斜角度越大,即两侧介质刚度过渡距离越短,渡越辐射能与本征场应变能比值越大.   相似文献   

14.
Strained epitaxial films grown on a relatively thick substrate are considered in the context of plane linear elasticity. The total free energy of the system is assumed to be the sum of the energy of the free surface of the film and the strain energy. Because of the lattice mismatch between film and substrate, flat configurations are in general energetically unfavorable and a corrugated or islanded morphology is the preferred growth mode of the strained film. After specifying the functional setup in which the existence problem can be properly framed, a study of the qualitative properties of the solutions is undertaken. New regularity results for volume-constrained local minimizers of the total free energy are established, leading, as a byproduct, to a rigorous proof of the zero-contact-angle condition between islands and wetting layers.  相似文献   

15.
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.  相似文献   

16.
黄春阳  唐山  彭向和 《力学学报》2017,49(4):758-762
当上层超弹性硬质薄膜和下层可膨胀基底构成的双层结构受压时,薄膜的自由表面可通过形成褶皱降低系统能量.研究表明,上下两层的模量比不同时,上层弹性硬质薄膜将表现出不同的表面失稳模式.本文提出了一种新颖的方法可有效抑制双层软材料的表面失稳,即改变基底材料的泊松比,这种方法同时适用于不具有应变硬化的软材料.首先基于Neo-Hookean模型发展了小变形条件下双层结构表面失稳的理论模型,通过半解析的方法得到了表面失稳的临界应变;然后通过有限元计算与模拟,进一步验证了负泊松比基底可延缓表面失稳.结果表明:(1)当双层结构基底泊松比为正且趋于0.5(不可压缩)时,双层结构在较小的压缩应变下出现表面失稳;(2)当基底的泊松比为负且趋于-1时,可被压缩至46%而不出现表面失稳,即可膨胀基底能有效抑制薄膜的表面失稳.本文发展的方法及主要结果可为延展性电子器件的设计提供指导.  相似文献   

17.
An analysis is made of heat transfer in the boundary layer of a viscoelastic fluid flowing over a stretching surface. The velocity of the surface varies linearly with the distance x from a fixed point and the surface is held at a uniform temperature T w higher than the temperature T of the ambient fluid. An exact analytical solution for the temperature distribution is found by solving the energy equation after taking into account strain energy stored in the fluid (due to its elastic property) and viscous dissipation. It is shown that the temperature profiles are nonsimilar in marked contrast with the case when these profiles are found to be similar in the absence of viscous dissipation and strain energy. It is also found that temperature at a point increases due to the combined influence of these two effects in comparison with its corresponding value in the absence of these two effects. A novel result of this analysis is that for small values of x, heat flows from the surface to the fluid while for moderate and large values of x, heat flows from the fluid to the surface even when T w >T . Temperature distribution and the surface heat flux are determined for various values of the Prandtl number P, the elastic parameter K 1 and the viscous dissipation parameter a. Numerical solutions are also obtained through a fourth-order accurate compact finite difference scheme. Received on 14 October 1997  相似文献   

18.
We study the effective behavior of heterogeneous thin films with three competing length scales: the film thickness and the length scales of heterogeneity and material microstructure. We start with three-dimensional nonhomogeneous nonlinear elasticity enhanced with an interfacial energy of the van der Waals type, and derive the effective energy density as all length scales tend to zero with given limiting ratios. We do not require any a priori selection of asymptotic expansion or ansatz in deriving our results. Depending on the dominating length scale, the effective energy density can be identified by three procedures: averaging, homogenization and thin-film limit. We apply our theory to martensitic materials with multi-well energy density and use a model example to show that the “shape-memory behavior” can crucially depend on the ratios of these length scales. We comment on the effective conductivity of linear composites, and also on multilayers made of shape-memory and elastic materials. Accepted: December 8, 1999  相似文献   

19.
We consider a problem on an ellipsoidal inhomogeneity in an infinitely extended homogeneous isotropic elastic medium. The inhomogeneity differs from the ambient body in the elastic moduli (Poisson’s ratio ν and shear modulus μ) and in that it has intrinsic strains. We use the equivalent inclusion method to write out expressions for the Helmholtz and Gibbs free energy of the inhomogeneity as quadratic forms in the intrinsic strains and strains at infinity. The general expressions for the coefficients of these quadratic forms are written out as three rank four tensors characterizing the contribution to the energy by the plastic strain (ɛ p 2), by the strain at infinity (ɛ 02), and (only for the Gibbs energy) by the cross term ɛ 0 ɛ p .  相似文献   

20.
In this paper we describe a general thermodynamically consistent variational principle for the rate of evolution of microstructure, which considers the competition between energy dissipation and the rate of change of Gibbs free energy of the system. We describe how numerical and approximate analytical procedures can be developed from the variational principle. Two examples are presented which demonstrate the utility of the approach: the kinetics of precipitate growth in an elastically strained body and the influence of an elastic strain on interdiffusion in a two-component system. Within these examples we pay particular attention to the effect of changes of elastic stored energy on the evolution process. The sensitivity of the morphology of growing phases to the ratio of the driving forces arising from elastic and chemical considerations is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号