首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let \({\mathfrak{D}}\) be the space consists of pairs (f, g), where f is a univalent function on the unit disc with f(0) = 0, g is a univalent function on the exterior of the unit disc with g(∞) = ∞ and f′(0)g′(∞) = 1. In this article, we define the time variables \({t_n, n\in \mathbb{Z}}\), on \({\mathfrak{D}}\) which are holomorphic with respect to the natural complex structure on \({\mathfrak{D}}\) and can serve as local complex coordinates for \({\mathfrak{D}}\) . We show that the evolutions of the pair (f, g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting \({\mathfrak{D}}\) to the subspace Σ consists of pairs where \({f(w)=1/\overline{g(1/\bar{w})}}\), we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin [31]. Since every C 1 homeomorphism γ of the unit circle corresponds uniquely to an element (f, g) of \({\mathfrak{D}}\) under the conformal welding \({\gamma=g^{-1}\circ f}\), the space Homeo C (S 1) can be naturally identified as a subspace of \({\mathfrak{D}}\) characterized by f(S 1) = g(S 1). We show that we can naturally define complexified vector fields \({\partial_n, n\in \mathbb{Z}}\) on Homeo C (S 1) so that the evolutions of (f, g) on Homeo C (S 1) with respect to ? n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f ?1g ?1). Moreover, in the latter case, the time variables are Fourier coefficients of γ and 1/γ ?1.  相似文献   

2.
It is shown that the von Neumann algebra\(R_\mathfrak{B} \)(B) generated by any scalar local functionB(x) of the free fieldA 0(x) is equal either to\(R_\mathfrak{B} \)(A 0) or to\(R_\mathfrak{B} \)(:A 0 2 :). The latter statement holds if the state space space\(\mathfrak{H}_B \) obtained from the vacuum state by repeated application ofB(x) is orthogonal to the one particle subspace. In the proof of these statements, space-time limiting techniques are used.  相似文献   

3.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of23Na19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J=±1)-transitions were induced electrically. Completely resolved spectra of NaF in theJ=1 rotational state have been measured in several vibrational states. The obtained quantities are: The electric dipolmomentμ el of the molecule forv=0, 1 and 2, the rotational magnetic dipolmomentμ J forv=0, 1, the difference of the magnetic shielding (σ -σ ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ -ξ ), the spin rotational constantsc F andc Na, the scalar and the tensor part of the molecular spin-spin interaction, the quadrupol interactione q Q forv=0, 1 and 2. The numerical values are
$$\begin{gathered} \mu _{\mathfrak{e}1} = 8,152(6) deb \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 1)}}{{\mu _{\mathfrak{e}1} (v = 0)}} = 1,007985 (7) \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 2)}}{{\mu _{\mathfrak{e}1} (v = 1)}} = 1,00798 (5) \hfill \\ \mu _J = - 2,89(3)10^{ - 6} \mu _B \hfill \\ \frac{{\mu _J (v = 0)}}{{\mu _J (v = 1)}} = 1,020 (13) \hfill \\ (\sigma _ \bot - \sigma _\parallel )_{Na} = - 51(12) \cdot 10^{ - 5} \hfill \\ (\sigma _ \bot - \sigma _\parallel )_F = - 51(12) \cdot 10^{ - 6} \hfill \\ (\xi _ \bot - \xi _\parallel ) = - 1,59(120)10^{ - 30} erg/Gau\beta ^2 \hfill \\ {}^CNa/^h = 1,7 (2)kHz \hfill \\ {}^CF/^h = 2,2 (2)kHz \hfill \\ {}^dT/^h = 3,7 (2)kHz \hfill \\ {}^dS/^h = 0,2 (2)kHz \hfill \\ eq Q/h = - 8,4393 (19)MHz \hfill \\ \frac{{eq Q(v = 0)}}{{eq Q(v = 1)}} = 1,0134 (2) \hfill \\ \frac{{eq Q(v = 1)}}{{eq Q(v = 2)}} = 1,0135 (2) \hfill \\ \end{gathered} $$  相似文献   

4.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

5.
The probability of Z 0-boson decay to a pair of charged fermions in a strong electromagnetic field, Z 0\(\bar f\) f, is calculated. On the basis of a method that employs exact solutions to relativistic wave equations for charged particles, an analytic expression for the partial decay width Γ(?) = Γ(Z 0\(\bar f\) f) is obtained at an arbitrary value of the parameter ? = \(eM_Z^{ - 3} \sqrt { - (F_{\mu \nu } q^\nu )^2 } \), which characterizes the external-field strength. The total Z 0-boson decay width in an intense electromagnetic field, Γ Z (?), is calculated by summing these results over all known generations of charged leptons and quarks. It is found that, in the region of relatively weak fields (? < 0.06), the field-induced corrections to the standard Z 0-boson decay width in a vacuum do not exceed 2%. As ? increases, the total decay width Γ Z (?) develops oscillations against the background of its gradual decrease to the absolute-minimum point. At ?min = 0.445, the total Z 0-boson decay width reaches the minimum value of Γ Z (?min) = 2.164 GeV, which is smaller than the Z 0-boson decay width in a vacuum by more than 10%. In the region of superstrong fields (? > 1), Γ Z (?) grows monotonically with increasing external-field strength. In the region ? > 5, the t-quark-production process Z 0\(\bar t\) t, which is forbidden in the absence of an external field, begins contributing significantly to the total decay width of the Z 0 boson.  相似文献   

6.
7.
The parabolic Anderson model is defined as the partial differential equation ? u(x, t)/? t = κ Δ u(x, t) + ξ(x, t)u(x, t), x ∈ ? d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u(x, 0) = u 0(x), x ∈ ? d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d κ, split into two at rate ξ ∨ 0, and die at rate (?ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents
$$ \lambda _{p}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t} \log \mathbb {E} ([u(0,t)]^{p})^{1/p}, \quad p \in \mathbb{N} , \qquad \lambda _{0}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t}\log u(0,t). $$
For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ??, where ?? = {??(x, y) : x, y ∈ ? d , xy} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (??), p?, are given by the formula
$$ \lambda _{p}(\mathcal{K} ) = \text{sup} \{\lambda _{p}(\kappa ) : \, \kappa \in \text{Supp} (\mathcal{K} )\}, $$
where, for a fixed realisation of ??, Supp(??) is the set of values taken by the ??-field. We also show that for the associated quenched Lyapunov exponent λ 0(??) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(??) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all ?? satisfying a certain clustering property, namely, there are arbitrarily large balls where ?? is almost constant and close to any value in Supp(??). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of ?? where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of ?? where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
  相似文献   

8.
The general class of problems we consider is the following: Let Ω 1 be a bounded domain in \({\mathbb{R}^d}\) for d ≥ 2 and let u 0 be a velocity field on all of \({\mathbb{R}^d}\) . Suppose that for all R ≥ 1 we have an operator \({\mathcal{T}_R}\) that projects u 0 restricted to 1 (Ω 1 scaled by R) into a function space on 1 for which the solution to some initial value problem is well-posed with \({\mathcal{T}_{R}u^0}\) as the initial velocity. Can we show that as R → ∞ the solution to the initial value problem on 1 converges to a solution in the whole space? We answer this question when d  =  2 for weak solutions to the Navier-Stokes and Euler equations. For the Navier-Stokes equations we assume the lowest regularity of u 0 for which one can obtain adequate control on the pressure. For the Euler equations we assume the lowest feasible regularity of u 0 for which uniqueness of solutions to the Euler equations is known (thus, we allow “slightly unbounded” vorticity). In both cases, we obtain strong convergence of the velocity and the vorticity as R → ∞ and, for the Euler equations, the flow. Our approach yields, in principle, a bound on the rates of convergence.  相似文献   

9.
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy’s Weibull distribution \(b{\left( {\tfrac{a}{b}} \right)^{\tfrac{{a + 1}}{b}}}{\left[ {\Gamma \left( {\tfrac{{a + 1}}{b}} \right)} \right]^{ - 1}}{x^a}\exp \left( { - \tfrac{a}{b}{x^b}} \right)\) where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as ~p ? α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) ? ν(0) ] / [ ν(1) ? ν(0) ] = p β with β = 0.388 when p ? 0.1 and β = 0.0822 when p ? 0.1.  相似文献   

10.
The dynamics of a quantum vortex toric knot TP,Q and other analogous knots in an atomic Bose condensate at zero temperature in the Thomas–Fermi regime is considered in the hydrodynamic approximation. The condensate has a spatially inhomogeneous equilibrium density profile ρ(z, r) due to the action of an external axisymmetric potential. It is assumed that z*= 0, r*= 1 is the point of maximum of function rρ(z, r), so that δ(rρ) ≈ –(α–)z2/2–(α + )(δr)2/2 for small z and δr. The geometrical configuration of a knot in the cylindrical coordinates is determined by a complex 2πP-periodic function A(?, t) = Z(?, t) + i[R(?, t))–1]. When |A| ? 1, the system can be described by relatively simple approximate equations for P rescaled functions \({W_n}(\varphi ) \propto A(2\pi n + \varphi ):i{W_{n,t}} = - ({W_{n,\varphi \varphi }} + \alpha {W_n} - \in W_n^*)/2 - \sum\nolimits_{j \ne n} {1/(W_n^* - W_j^*)} \). For = 0, examples of stable solutions of type W n = θ n (?–γt)exp(–iωt) with a nontrivial topology are found numerically for P = 3. In addition, the dynamics of various unsteady knots with P = 3 is modeled, and the tendency to the formation of a singularity over a finite time interval is observed in some cases. For P = 2 and small ≠ 0, configurations of type W0W1B0exp(iζ) + C(B0, α)exp(–iζ) + D(B0, α)exp(3iζ), where B0 > 0 is an arbitrary constant, ζ = k0?–Ω0t + ζ0, k0 = Q/2, and Ω0 = (–α)/2–2/B02, which rotate about the z axis, are investigated. Wide stability regions for such solutions are detected in the space of parameters (α, B0). In unstable zones, a vortex knot may return to a weakly excited state.  相似文献   

11.
We analyze the detailed time dependence of the wave function ψ(x,t) for one dimensional Hamiltonians \(H=-\partial_{x}^{2}+V(x)\) where V (for example modeling barriers or wells) and ψ(x,0) are compactly supported.We show that the dispersive part of ψ(x,t) is the Borel sum of its asymptotic series in powers of t ?1/2, t→∞. The remainder, the difference between ψ and the Borel sum, i.e., the exponential part of the transseries of ψ, is a convergent expansion of the form \(\sum_{k=0}^{\infty}g_{k}\Gamma_{k}(x)e^{-\gamma_{k} t}\), where Γ k are the Gamow vectors of H, and k are the associated resonances; generically, all g k are nonzero. For large k, γ k ~const?klog?k+k 2 π 2 i/4. The effect of the Gamow vectors is visible when time is not very large, and the decomposition defines rigorously resonances and Gamow vectors in a nonperturbative regime, in a physically relevant way.The decomposition allows for calculating ψ for moderate and large t, to any prescribed exponential accuracy, using optimal truncation of power series plus finitely many Gamow vectors contributions.The analytic structure of ψ is perhaps surprising: in general (even in simple examples such as square wells), ψ(x,t) turns out to be C in t but nowhere analytic on ?+. In fact, ψ is t-analytic in a sector in the lower half plane and has the whole of ?+ a natural boundary. In the dual space, we analyze the resurgent structure of ψ.  相似文献   

12.
Let μ be an arbitrary composition of M + N and let \({\mathfrak{s}}\) be an arbitrary \({0^{M}1^{N}}\)- sequence. A new presentation, depending on \({\mu \rm and \mathfrak{s}}\), of the super Yangian YM|N associated to the general linear Lie superalgebra \({\mathfrak{gl}_{M|N}}\) is obtained.  相似文献   

13.
We study the asymptotic structure of the first K largest eigenvalues λ k,V and the corresponding eigenfunctions ψ(?;λ k,V ) of a finite-volume Anderson model (discrete Schrödinger operator) \(\mathcal{H}_{V}= \kappa \Delta_{V}+\xi(\cdot)\) on the multidimensional lattice torus V increasing to the whole of lattice ? ν , provided the distribution function F(?) of i.i.d. potential ξ(?) satisfies condition ?log(1?F(t))=o(t 3) and some additional regularity conditions as t→∞. For zV, denote by λ 0(z) the principal eigenvalue of the “single-peak” Hamiltonian κΔ V +ξ(z)δ z in l 2(V), and let \(\lambda^{0}_{k,V}\) be the kth largest value of the sample λ 0(?) in V. We first show that the eigenvalues λ k,V are asymptotically close to \(\lambda^{0}_{k,V}\). We then prove extremal type limit theorems (i.e., Poisson statistics) for the normalized eigenvalues (λ k,V ?B V )a V , where the normalizing constants a V >0 and B V are chosen the same as in the corresponding limit theorems for \(\lambda^{0}_{k,V}\). The eigenfunction ψ(?;λ k,V ) is shown to be asymptotically completely localized (as V↑?) at the sites z k,V V defined by \(\lambda^{0}(z_{k,V})=\lambda^{0}_{k,V}\). Proofs are based on the finite-rank (in particular, rank one) perturbation arguments for discrete Schrödinger operator when potential peaks are sparse.  相似文献   

14.
An electric Molecular-Beam-Resonance-Spectrometer has been used to measure simultanously the Zeeman- and Stark-effect splitting of the hyperfine structure of39K19 F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J =±1)-transitions were induced electrically. Completely resolved spectra of KF in theJ=1 rotational state have been measured. The obtained quantities are: The electric dipolmomentμ e l of the molecul forv=0,1 and 2; the rotational magnetic dipolmomentμ J forv=0,1; the difference of the magnetic shielding (σ ? σ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ ? ξ). The numerical values are
$$\begin{array}{*{20}c} {\mu _{e1} = 8,585(4)deb,} \\ {\frac{{(\mu _{e1} )_{\upsilon = 1} }}{{(\mu _{e1} )_{\upsilon = 0} }} = 1,0080,} \\ {{{\mu _J } \mathord{\left/ {\vphantom {{\mu _J } J}} \right. \kern-\nulldelimiterspace} J} = ( - )2352(10) \cdot 10^{ - 6} \mu _B ,} \\ {(\sigma _ \bot - \sigma _\parallel )F = ( - )2,19(9) \cdot 10^{ - 4} ,} \\ {(\sigma _ \bot - \sigma _\parallel )K = ( - )12(9) \cdot 10^{ - 4} ,} \\ {(\xi _ \bot - \xi _\parallel ) = 3 (1) \cdot 10^{ - 30} {{erg} \mathord{\left/ {\vphantom {{erg} {Gau\beta ^2 }}} \right. \kern-\nulldelimiterspace} {Gau\beta ^2 }}} \\ \end{array} $$  相似文献   

15.
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with \({{\bf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}\) denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x 1 = 0 and the other electron coordinates do not coincide, and differ from 0, ψ can be represented locally as ψ(x) = ψ (1)(x) + |x 1|ψ (2)(x) with ψ (1), ψ (2) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.  相似文献   

16.
We consider on a bounded domain \(\Omega \subset {\mathbb{R}}^N\) , the Schrödinger operator ? Δ ? V supplemented with Dirichlet boundary solutions. The potential V is either the critical inverse square potential V(x) = (N ? 2)2/4|x|?2 or the critical borderline potential V(x) =  (1/4)dist(x, ?Ω)?2. We present explicit asymptotic estimates on the eigenvalues of the critical Schrödinger operator in each case, based on recent results on improved Hardy–Sobolev type inequalities.  相似文献   

17.
We consider two-dimensional Schrödinger operators H(B, V) given by Eq. (1.1) below. We prove that, under certain regularity and decay assumptions on B and V, the character of the expansion for the resolvent (H(B, V) ? λ)?1 as λ → 0 is determined by the flux of the magnetic field B through \({\mathbb{R}^2}\) . Subsequently, we derive the leading term of the asymptotic expansion of the unitary group e ?i t H(B, V) as t → ∞ and show how the magnetic field improves its decay in t with respect to the decay of the unitary group e ?i t H(0, V).  相似文献   

18.
19.
It is proved that, for the dimension d of the stabilizer of an analytic function z(x, y) in the gage pseudogroup G = {z(x, y) → c(z(a(x), b(y))}, there are precisely four possibilities: (1) d = ∞ and the complexity of z is zero, (2) d = 3 and the complexity of z is equal to one, (3) d = 1 and z is equivalent the function r(x + y) ? x of complexity two, (4) d = 0 in all remaining cases.  相似文献   

20.
We study the transverse momentum spectra of identified pions (π + π+), kaons ((K + K +), K 0 s ), protons (p + p?) and lambda hyperons (Λ + Λ?) produced at mid-rapidity (0 < y cm < 0.5) in most central (0?5)% p–Pb collisions at \(\sqrt {s_{NN} }\) = 5.02 TeV in comparison with a Unified Statistical Thermal Freeze-out Model (USTFM). The measurements for pions are reported upto p T = 3 GeV, the kaons (K + K +) are reported upto p T = 2.5 GeV, K 0 s is reported upto p T = 7 GeV, and the baryons (protons and lambda hyperons) are reported upto p T = 3.5 GeV. A good agreement is seen between the calculated results and the experimental data points taken from the ALICE experiment. The transverse momentum spectra are found to be flatter for heavy particles than for light particles. Bulk freeze-out properties in terms of kinetic freeze-out temperature and the transverse collective flow velocity are extracted from the fits of the transverse momentum spectra of these hadrons. The effect of resonance decay contributions has also been taken care of.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号