首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用原位聚合法制备了含有N-甲基、丙基哌啶双三氟甲磺酰亚胺离子液体的凝胶型聚合物电解质.利用SEM和XPS测试了电解质膜与LiFePO4电极的界面状态,充放电循环后,在电解质膜与LiFePO4之间有一层薄膜,这层薄膜中含有N和S元素.结果表明,随着充放电的不断进行,凝胶型电解质中未聚合的甲基丙烯酸甲酯与电极表面的锂离子之间发生电子转移,形成SEI膜,至少要三个循环后才能形成稳定的SEI膜.随着SEI膜的增厚,放电容量增加,阻碍了电子转移,使系统更加的稳定.在不同  相似文献   

2.
锂离子电池发热特性的研究对于发展电池热管理系统具有重要意义.本文采用数值方法对锂电池放电过程中的微观发热特性进行了研究,并对锂电池放电循环过程中固体电解质(SEI)膜和欧姆热的变化规律进行了分析,研究结果表明:锂电池以高倍率(5C)放电时,SEI膜产生的热量是锂电池发热的重要部分;随着放电循环的进行,锂电池负极颗粒表面SEI膜以线性规律增厚,导致电池SEI膜电阻不断增大;锂电池放电环境温度越高,锂电池负极SEI膜增厚越快,容量衰退越快。  相似文献   

3.
为推进柴油燃烧初期智能识别与抑制灭火技术的发展,通过小尺度油池实验和光谱分析的方法,首次对0~#柴油燃烧初期火焰光谱进行了初步研究,得到0~#柴油燃烧初期火焰光谱的整体特性:在200~380nm的近紫外波段,光谱强度最弱,强度与波长关系不大,特征谱带数量最少,基本没有明显的谱峰;在380~780nm的可见光波段,光谱强度最强,强度随波长的增大而增大,特征谱带最多,存在较多明显的谱峰;在780~1 100nm的近红外波段,光谱强度相对较大,在780nm处出现强度的拐点,强度随波长的增大而减小,特征谱带较多,存在一定数量较为明显的谱峰。进一步对其火焰光谱进行分析得到:燃烧过程中主要的中间产物自由基包括OH,CN,CH,C_2,H2O等;火焰光谱中主要的特征谱带包括OH自由基306.4nm系统谱带和振动转动谱带、CN自由基紫色光区和红色光区谱带、CH自由基431.5nm谱带、C_2自由基Swan和Phillips近红外谱带、H2O分子振动转动谱带等;特征谱带特征波长及时间的分布情况和主要生成机制;在本实验批次0~#柴油中存在金属K元素,其特征谱线在761和769nm处出现明显的谱峰;在431,512,516,547,589,766,769,891和927nm出现较为明显的特征谱峰,适合作为0~#柴油燃烧初期火焰识别的标志。  相似文献   

4.
QAPVA/PMPVA复合物膜对95%乙醇脱水的IR研究   总被引:1,自引:0,他引:1  
季铵化聚乙烯醇(QAPVA)与磷酸单酯化聚乙烯醇(PMPVA)自组装成聚离子复合物(PIC)膜。PIC膜用95%乙醇中浸泡48 h, 在20~120 ℃(间隔20 ℃)下测定吸水后PIC膜的IR,分析了>3 000 cm-1OH伸缩振动基频(νOH)随温度变化情况,探讨了水与膜中OH的氢键作用。由于νOH在3 000 cm-1以上重叠严重,结合1 300~1 700 cm-1水与PIC膜中离子键的静电作用,采用二维相关分析提高分辨率,定性描述了95%乙醇中水与PIC膜之间的结合方式。结果表明:>3 000 cm-1νOH的重叠谱带得到了分辨, 证明了水与膜内OH缔合优先吸附渗透,随温度变化早于膜内的OH自缔合被解吸与乙醇分离;确认了水和PIC膜内聚电解质基团的吸收, 证明了水与聚电解质基团靠静电作用被吸附, 随温度升高被解吸与乙醇分离。文章为PIC膜用于有机物脱水研究提供了一种简便高效的方法。  相似文献   

5.
本文主要利用Raman光谱对由丙烯碳酸酯(PC)/聚丙烯腈(PAN)/双三氟甲基碘酸酰亚胺锂(LiTFSI)组成的锂离子电池聚合物电解质进行了研究,通过研究发现:Li+离子与PC的缔合和PC对TFSI-阴离子结构的影响导致了Li+-PC-TFSI-离子团的生成。而在所有的PC分子和盐发生缔合之前,PAN却不能溶到PC中。一旦PAN开始溶于PC,电解质内与PC相关的微观结构将不再随盐的浓度的增加而改变。但Li+离子与PAN之间的作用却显得异常激烈。  相似文献   

6.
本文报道了非晶态离子导体Li_2B_2O_4的~7Li核磁共振研究。测量了~7Li核磁共振谱与温度的关系。实验中发现,Li_2B_2O_4的晶态、非晶态和部分晶化样品的~7Li核磁共振谱有很大的不同,且在部分晶化样品的~7Li核磁共振谱上有附加的小峰,它与LiCl(Al_2O_3)的~7Li核磁共振谱上附加的小峰相类似。我们也对非晶态离子导体B_2O_3-0.7Li_2O-0.7LiCl进行了~7Li核磁共振研究,其结果与上面的类似。研究结果表明,它们都起因于非晶母体与微晶的界面效应。  相似文献   

7.
Li3xLa((2/3)–x?(1/3)–2x)TiO3(LLTO)是一类颇具前景的锂离子电池固态电解质.本文采用第一性原理结合分子动力学方法对贫锂相和富锂相两种类型的LLTO表面进行研究,分析表面Li含量对其稳定性、电子结构及Li离子输运性质的影响.结果表明,具有La/O/Li-原子终端的(001)面为最稳定晶面.对于LLTO(001)面,当贫锂相/富锂相终端Li含量为0.17/0.33,0.29/0.40,0.38/0.45时,其表面结构更为稳定.电子结构分析表明,随着Li含量的增大,不论是贫锂相还是富锂相,其(001)表面均发现金属至半导体的转变.Li离子输运性质的研究结果表明,贫锂相和富锂相LLTO(001)表面均具有沿ab平面的二维扩散通道,且当终端Li含量分别达到0.38和0.40时具有最大的Li离子扩散系数及最低的Li离子扩散能垒,最低扩散能垒分别为0.42 eV和0.30 eV.因而,改变终端Li含量有利于提高LLTO(001)表面稳定性、打开表面带隙、改善Li离子迁移性能,这有助于...  相似文献   

8.
二氧化钛胶体及其自组装薄膜的光谱分析   总被引:3,自引:1,他引:2  
水解钛酸四丁酯制备了二氧化钛胶体;采用静电自组装技术制备了聚电解质与二氧化钛胶体的复合薄膜;采用吸收光谱和荧光光谱对二氧化钛胶体及其复合薄膜进行了表征。吸收光谱显示,胶体的吸收带边蓝移,显示出量子尺寸效应,胶体的荧光光谱出现了多个发光带,最短发光波长位于371nm,发光主要集中在蓝光区域内;在252nm光源激发下。复合薄膜的发射谱带具有二氧化钛水溶胶的发射谱带的特征,荧光发射主要来源于二氧化钛,聚电解质的引入对复合薄膜的光致发光特性有一定影响。  相似文献   

9.
a-C:N:H纳米尖端荧光产生的机理   总被引:2,自引:0,他引:2       下载免费PDF全文
王必本  党纯 《发光学报》2010,31(3):400-404
用CH4,H2和NH3为反应气体,利用等离子体增强热丝化学气相沉积在沉积有碳膜的Si衬底上制备了a-C:N:H纳米尖端,并用扫描电子显微镜和微区Raman光谱仪对碳膜和纳米尖端进行了表征。结果表明:Raman谱中含有与碳和氮相关的峰,且纳米尖端的Raman谱比碳膜的Raman谱有很强的荧光背景。Raman谱中的峰说明沉积的碳膜和纳米尖端是a-C:N:H薄膜和a-C:N:H尖端。a-C:N:H纳米尖端的Raman谱中强荧光背景的产生表明其在激发光源照射的过程中发射了强荧光,对a-C:N:H纳米尖端产生强荧光的机理进行了探讨。  相似文献   

10.
为了实现对Li—N共掺杂p型ZnO薄膜的形成机制以及其稳定p型导电原因的揭示,利用X射线光电子谱及基于同步辐射光源的X射线吸收精细结构谱测试对薄膜的局域电子结构进行了测算分析.获得了Li—N成键及Li—N复合型受主形成的信号,利用光致发光测量计算其受主能级为122 mV.证实了薄膜中Li—N复合型受主的形成,而Li—N...  相似文献   

11.
《Current Applied Physics》2014,14(4):596-602
The electrochemical and compositional changes of a solid electrolyte interphase (SEI) layer formed on the surface of silicon thin film are investigated in order to determine the effect of the content of fluoroethylene carbonate (FEC) additive in the electrolyte. Comparisons are made with FEC-free electrolyte, in which the major components are (CH2OCO2Li)2 and Li2CO3. The (CH2OCO2Li)2 and Li2CO3 of the SEI layer in the FEC-containing electrolyte decreases, and polycarbonate and LiF increase relatively with the repression of –OCO2Li groups. The additive affects the composition of the SEI layer, which leads to lower resistance. The electrochemical performance regarding cycle retention, coulombic efficiency, rate capability, and discharge capacity in the FEC-containing cell are significantly enhanced compared to that of the FEC-free electrolyte. The observed optimum FEC concentration in the electrolyte is 1.5%, due to the reduced charge transfer and SEI resistance in our experimental range.  相似文献   

12.
锂离子电池相关材料的Raman光谱学研究   总被引:2,自引:2,他引:0  
锂离子电池是目前综合性能最好的可充电池。本文总结我们实验室用Raman光谱学研究锂离子电池相关材料的一些结果 ,包括聚合物电解质的微结构和离子输运机制 ,低温热解碳负极材料的结构表征和锂离子在其中的嵌入 /脱出机理 ,元素替代引起正极材料LiMn2 O4的结构变化以及在充放电过程中电极 /电解质界面形成的钝化层的性质及其对电池性能的影响  相似文献   

13.
The thermal stabilities of hard carbon spherule (HCS), artificial graphite (AG), and natural graphite (NG) were investigated by thermo-gravimetric differential scanning calorimetry (TG-DSC). After lithiation, AG shows the lowest onset exothermic temperature. However, all there materials exhibit similar onset temperatures for thermal reactions after ten cycles. It is obvious that the thermal behaviors of solid electrolyte interphase (SEI) film for HCS and AG change gradually with the electrochemical cycling. In contrast, the thermal stability of the surface film on NG is maintained during repeated lithium ion insertion/extraction. Because of their different Li storage behaviors, their thermal reactivities with electrolyte are quite different from each other. Especially for HCS, it shows several successive and different exothermic peaks at the 1st and 11th lithiated states, while both AG and NG display similar thermal reactivity before and after repeated cycles. In summary, it is found that thermal properties of SEI layer and lithium in lithiated carbonaceous materials for all three samples have different impacts on the whole thermal behaviors of electrode.  相似文献   

14.
The thermal decomposable species in the solid electrolyte interphase (SEI) film on Cr2O3 powder anode at different lithiated and delithiated states in the first cycle were analyzed by thermogravimetry and mass spectrometry (TG-MS) technique. The weight loss ratio in a fully lithiated Cr2O3 electrode during TG measurement at 50–500 °C is 8.9 wt%, which is decreased to 1.5 wt% for a fully delithiated Cr2O3 electrode. This indicates that the SEI film on Cr2O3 powder anode is decomposed electrochemically upon delithiation. The main gas products are CH2=CH2, CO2, and CH3-containing volatile species in thermal reaction. They are released step-by-step in four characteristic temperature regions, which were originated mainly from oligomer and polyethylene-oxide-like species, partly from ROCO2Li. It is also observed that the amount of thermal decomposable components in the SEI film on the fully lithiated Cr2O3 powder electrode is much higher than that on graphite and hard carbon anodes, indicating different SEI features of transition metal oxide anodes.  相似文献   

15.
The impacts of boron-based Li salt additives including lithium tetrafluoroborate (LiBF4) and lithium difluoro(oxalate)borate (LDFOB) on the storage life of Li-ion battery at elevated temperature are investigated. Adding 1 wt% additives in the electrolyte significantly affects the storage life of the LiNi0.8Co0.15Al0.05O2/graphite full cell at 55 °C. The anode solid electrolyte interphase (SEI), preventing the loss of Li+ and e? in anode, is the key factor affecting the storage life. The formation and aging of SEI on the graphite anode with and without additives are investigated. It is found that the SEI formed with the addition of LiBF4 is thick and loose due to LiF crystals produced by the decomposition of LiBF4 and the SEI cannot prevent the Li+ and e? loss in anode and the decomposition of the electrolyte solvent, resulting in shorter storage life of the battery. On the contrary, the SEI formed with the addition of LDFOB is thick and compact due to formation of the lithium oxalate in the SEI, produced by the decomposition of LDFOB. The SEI efficiently inhibits decomposition of the electrolyte solvent on anode and makes a longer storage life of the battery.  相似文献   

16.
To investigate the formation of a solid electrolyte interface (SEI) on the Li1+xV3O8 electrode surface in the thermodynamic stability range of the organic electrolyte, we applied scanning photoelectron microscopy (SPEM) to a pristine electrode and to an electrode after ten cycles. The F K-edge absorption spectrum of the cycled electrode showed that LiF forms on the electrode surface during the lithium insertion–extraction process in the Li1+xV3O8/Li cell. The photoelectron spectrum for the cycled electrode showed intense spectral features corresponding to Li 1s, F 2s, F 2p, and P 2p electron signals, whereas these spectral features were of negligible intensity for the pristine electrode. The above results give strong support for the formation of an SEI that consists of LiF and compounds containing phosphorus during operation of the battery. The SPEM images also revealed that the fluorine distribution on the surface of the cycled electrode was inhomogeneous.  相似文献   

17.
Oligo(ethylene oxide)-functionalized trialkoxysilanes can be used as novel electrolytes for high-voltage cathode, such as LiCoO2 (4.35 V) and Li1.2Ni0.2Mn0.6O2 (4.6 V); however, they are not well compatible with graphite anode. In this study, a synergistic solid electrolyte interphase (SEI) film-forming effect between [3-[2-(2-methoxyethoxy)ethoxy]propyl]-trimethoxysilane (TMSM2) and propylene carbonate (PC) on graphite electrode was investigated. Excellent SEI film-forming capability and cycling performance was observed in graphite/Li cells using the electrolyte of 1 M LiPF6 in the binary solvent of TMSM2 and PC, with the PC content in the range of 10–30 vol.%. Meanwhile, the graphite/Li cells delivered higher specific capacity and better capacity retention in the electrolyte of 1 M LiPF6 in TMSM2 and PC (TMSM2:PC = 9:1, by vol.), compared with those in the electrolyte of 1 M LiPF6 in TMSM2 and EC (TMSM2:EC = 9:1, by vol.). The synergistic SEI film-forming properties of TMSM2 and PC on the surface of graphite anode was characterized by electrolyte solution structure analysis through Raman spectroscopy and surface analysis detected by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) analysis.  相似文献   

18.
Rechargeable lithium ion cells operate at voltages of ∼4.5 V, which is far beyond the thermodynamic stability window of the battery electrolyte. Strong electrolyte reduction and corrosion of the negative electrode has to be anticipated, which leads to irreversible loss of electroactive material and electrolyte, and thus strongly deteriorates cell performance. To minimize these reactions, negative electrode and electrolyte components have to be combined bringing about the electrolyte reduction products to form an effectively protecting film at the anode/electrolyte interface. This film hinders further electrolyte decomposition reactions and acts as membrane for the lithium cations, i.e., behaves as asolidelectrolytei2nt erphase (SEI). The present paper gives a review of our recent work in the field of negative electrodes in lithium ion batteries. The effects of the graphite anode surface and graphite anode surface modification on the formation of the SEI are discussed in detail by using the example: modification with carbon dioxide. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

19.
The formation of a passivation film (solid electrolyte interphase, SEI) at the surface of the negative electrode of full LiCoO2/graphite lithium-ion cells using different salts (LiBF4, LiPF6, LiTFSI, LiBETI) in carbonate solvents as electrolyte was investigated by X-ray photoelectron spectroscopy (XPS). The analyzes were carried out at different potential stages of the first cycle, showing the potential-dependent character of the surface film species formation and the specificity of each salt. At 3.8 V, for all salts, we have mainly identified carbonated species. Beyond this potential, the specific behavior of LiPF6 was identified with a high LiF deposit, whereas for other salts, the formation process of the SEI appears controlled by the solvent decomposition of the electrolyte.  相似文献   

20.
To address the challenge of the IL-based electrolyte cannot be effectively intercalated in graphite anode, and especially the urgent needs for the compatibility between high performance and high security, the IL-based hybrid electrolyte systems with ethylene carbonate/propylene carbonate (EC/PC) as a co-solvent and vinylene carbonate (VC) as an additive were designed. The high dielectric constant of EC/PC significantly increased the ionic conductivity and lithium ion migration of the electrolyte system. Meanwhile, the presence of VC can form SEI preventing EC and PYR14+ reductive decomposition on the electrode interface, and at the same moment, the SEI promotes effective Li cation insertion into the graphene interlayer. The Li/C half-cells showed high reversible capacity, cycling efficiency, and good cycle stability with the IL-based hybrid electrolyte. It is worth to highlight the better performance, in terms of the excellent thermal stability and high safety. Thus, the IL-based hybrid electrolyte combined with good electrochemical performance holds substantial promise for lithium-ion battery, and should have broad application prospects in the high energy density, especially high-security requirements, of the new lithium-ion battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号