首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium(III) chloride tetrahydrate and Schiff-base ligands derived from adamantaneamine and 3-/4-methoxysalicylaldehyde gave two complexes, C22H32Cl3InN2O3 (1) and C36H44Cl3InN2O4 (2), respectively. The complexes were characterized by IR, 1H NMR, elemental analysis, molar conductance, thermal analysis, and single-crystal X-ray diffraction. Complex 1 crystallizes in the monoclinic system, P21/n space group with the asymmetric unit consisting of one indium(III), one N-(3-methoxysalicylidene)-aminoadamantane (L1), three chlorides and one N,N-dimethylformamide molecule. The indium is six-coordinate with reversed triangular-prism geometry via three oxygens and three chlorides. Complex 2 crystallizes in the triclinic system, P 1 space group; the asymmetric unit consists of one indium(III), two N-(4methoxysalicylidene)-aminoadamantane (L2), and three chlorides. The indium is five-coordinate with distorted trigonal-bipyramidal geometry via two oxygens and three chlorides. Antibacterial activities of the complexes have been investigated against Escherichia coli and Staphylococcus aureus.  相似文献   

2.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

3.
A series of neodymium(III) and samarium(III) complexes of type [Ln(L)Cl(H2O)3] have been synthesized with Schiff bases (LH2) derived from 3‐(phenyl/substituted phenyl)‐4‐amino‐5‐mercapto‐1,2,4‐triazoles and isatin. The structures of the complexes were established using elemental analysis, molar conductivities, magnetic moments, infrared, NMR (1H, 13C) and UV–visible spectra, X‐ray diffraction and mass spectrometry. The thermal behaviour of these compounds under non‐isothermal conditions was investigated using thermogravimetry and differential thermogravimetry. The intermediates obtained at the end of various thermal decomposition steps were identified from elemental analysis and infrared spectral studies. All the ligands and their complexes were also screened for their antibacterial activity against Staphylococcus aureus and Bacillus subtilis and antifungal activity against Aspergillus niger, Aspergillus flavus and Colletotrichum capsici. The screening results were correlated with the structural features of the compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Some new Schiff bases derivates from 2-furaldehyde and phenylenediamines (L1-3) and their complexes with lanthanum (La), samarium (Sm), gadolinium (Gd) and erbium (Er) have been synthesized. These complexes with general formula [Ln(L1-3)2(NO3)2]NO3·nH2O (Ln = La, Sm, Gd, Er) were characterized by elemental analysis, UV-Vis, FT-IR and fluorescence spectroscopy, molar conductivity and thermal analysis. The metallic ions were found to be eight coordinated. The emission spectra of these complexes indicate the typical luminescence characteristics of the Sm(III), La(III), Er(III) and Gd(III) ions.  相似文献   

5.
Ortho-metallated ruthenium(III) complexes with Schiff bases (H2L) derived from one mole equivalent each of benzaldehyde and acid hydrazides are described. Reactions of H2L with [Ru(PPh3)3Cl2] in presence of NEt3 (1:1:2 mole ratio) under aerobic conditions in methanol provide the complexes having the general formula trans-[Ru(L)(PPh3)2Cl] in 55-60% yields. The complexes have been characterized with the help of elemental analysis, magnetic susceptibility, electrochemical and various spectroscopic (infrared, electronic and EPR) measurements. The +3 oxidation state of the metal centre in these complexes is confirmed by their one-electron paramagnetic nature. Molecular structures of two representative complexes have been determined by X-ray crystallography. In each complex, the metal ion is in a distorted octahedral CNOClP2 coordination sphere. The dianionic C,N,O-donor ligand (L2−) together with the chloride form a CNOCl square-plane and the P-atoms of the two PPh3 molecules occupy the two axial sites. The electronic spectra of the complexes in dichloromethane solutions display several absorptions due to ligand-to-metal charge transfer and ligand centred transitions. In dichloromethane solutions, the complexes display a ruthenium(III) → ruthenium(IV) oxidation in the potential range 0.35-0.98 V (vs. Ag/AgCl). All the complexes in frozen (110 K) dichloromethane-toluene (1:1) solutions display rhombic EPR spectra.  相似文献   

6.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Solid complexes of five derivatives of thio-Schiff bases with La(III) and Ce(III) ions were prepared and characterized by elemental and thermogravimetric analyses. The suggested general formula of the solid complexes is [ML2(H2O)X]·2H2O, whereM=trivalent lanthanide ion,L=Schiff base andX=Cl? or ClO 4 ? . Information about the water of hydration, the coordinated water molecules, the coordination chemistry and the thermal stability of these complexes was obtained and is discussed. Additionally, a general scheme of thermal decomposition of the lanthanide-Schiff base complexes is proposed.  相似文献   

8.
Eight chromium(III) complexes of tetradentate Schiff bases have been prepared in situ by condensing of a substituted salicylaldehyde compound with ethylenediamine. These were characterized by elemental analysis, m.p., IR, molar conductivity, magnetic moment measurements, and electronic spectra. The free ligands were also characterized by 1H and 13C NMR spectra. The 13C NMR spectra are discussed in terms of possible substituent effects. The IR and electronic spectra of the free ligand and the complexes are compared and discussed. The electrospray ionization (ESI) mass spectra of four free ligands and their complexes were measured. The deconvolution of the visible spectra of the complexes, C2v symmetry, in DMSO yields three peaks at ca. 15 600–17 600, 18 400–20 400 and 20 000–23 100, and are assigned to the three d–d transitions, 4B1g → 4Eg(4T2g); 4B1g → 4B2g(4T2g); 4B1g → 4Eg(4T1g), respectively. The complexes showed magnetic moment in the range of 3.5–4.2 BM which corresponds to three unpaired electrons.  相似文献   

9.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

10.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

11.
A series of triazole‐derived Schiff bases (L1–L5) and their oxovanadium(IV) complexes have been synthesized. The chemical structures of Schiff bases were characterized by their analytical (CHN analysis) and spectral (IR, 1H and 13C NMR and mass spectrometry) data, and oxovanadium(IV) complexes were elucidated by their physical (magnetic susceptibility and conductivity), analytical (CHN analysis), conductance measurements and electronic spectral data. The molar conductivity data indicate the oxovanadium(IV) complexes to be non‐electrolyte. The Schiff bases act as bidentate and coordinate with the oxovanadium(IV)‐forming stoichiometry of a complex as [M (L‐H)2] where M = VO and L = L1–L5 in a square‐pyramidal geometry. The agar well diffusion method was used for in vitro antibacterial screening against E. coli, S. flexenari, P. aeruginosa, S. typhi, S. aureus and B. subtilis and for antifungal activity against T. longifucus, C. albican, A. flavus, M. canis, F. solani and C. glaberata. The biological activity data show the oxovanadium(IV) complexes to be more antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal strains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The Schiff bases [H2SBSaD], [H2SBVD] and [H2SBND], derived by the condensation of S-benzyldithiocarbazate and salicylaldehyde, 2-hydroxy-3-methoxybenzaldehyde and 2-hydroxy-1-naphthaldehyde respectively, react with diestertin dichlorides, R2SnCl2 [R=? CH2CH2CO2CH3, ? CH2CH2CO2C2H5 or ? CH2CH2CO2C4H9] in 1:1 molar proportion to yield chlorine-substituted complexes of the type R2Sn(Schiff base), the base being tridentate. The complexes are characterized on the basis of their elemental analyses, IR and 1H NMR spectral studies. The 13C and 119Sn NMR and the tin-carbon coupling constant data reveal the structures of the complexes to be octahedral with trans ester grouping, and bidentate ester linkages. The pentacoordinated complex (CH3)2Sn(SBSaD) was prepared by the reaction of dimethyltin oxide with H2SBSaD in equimolar proportions.  相似文献   

13.
In this study, three new immobilized Schiff bases and their Co(II), Cu(II) and Ni(II) metal complexes have been prepared. The ligands silica-Si[N-(3-propyl)2,4-dihydroxybenzaldimine] (1) H2L, silica-Si[N-(3-propyl)4-methylsalicylaldimine-3-methoxy] (2) HL and silica-Si[N-(3-propyl)2-pyridinecarboxyaldimine] (3) L have bidentate characters. Therefore, the complexes are the mononuclear. Ligands and metal complexes were characterized by FTIR, AAS and thermoanalytical techniques. On the basis of analytical data and IR studies, a 1:1 metal to ligand stoichiometry has been suggested. TG and DTA results showed that these ligands and complexes had good thermal stability. The heat capacities of ligands were reported in the temperature range 273–363 K as no thermal anomaly was found in this temperature range.  相似文献   

14.
The effect of the nature of organic ligands and complex formation on the photoluminescent characteristics (relative quantum yield, excited-state lifetime) and thermal stability of tetradentate Schiff bases (H2L), derivatives of salicylaldehyde (H2(SAL)1, H2(SAL)2), o-vanillin (H2(MO)1, H2(MO)2) with ethylenediamine and o-phenylenediamine, and their zinc(II) complexes was studied. Zinc(II) complexes were synthesized by the reaction of H2L with Zn(AcO)2·2H2O in MeOH at room temperature or under reflux. In the case of H2L = H2(SAL)2, H2(MO)1, H2(MO)2, complexes of the composition ZnL·H2O were isolated irrespective of the temperature. For H2L = H2(SAL)1, the reaction results in Zn(SAL)1·H2O at room temperature and in anhydrous dimeric complex [Zn(SAL)1]2 under reflux. Density functional calculations of H2L and ZnL confirmed that (1) luminescence of these compounds is due to the π-π* transition between orbitals of the organic ligand and (2) enhancement of conjugation of the chain and introduction of electron-donating substituents lead to a decrease of the energy gap and, there-fore, to a bathochromic shift of the emission maximum. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1846–1855, September, 2008.  相似文献   

15.
By condensation of rimantadine and substituted salicylaldehyde, three new Schiff bases, HL1, HL2 and HL3, were synthesized. Then, a mixture of one of the new ligands and cobalt(II) chloride hexahydrate in ethanol led to 1, 2, and 3, respectively. These complexes were characterized by melting point, elemental analysis, infrared spectra, molar conductance, thermal analysis, and single-crystal X-ray diffraction analysis. X-ray diffraction analysis reveals that 1 crystallizes in the orthorhombic system, Pbcn space group; each asymmetric unit consists of one cobalt(II) ion, two deprotonated ligands, and one lattice water. The central cobalt is four coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligand, forming a distorted tetrahedral geometry. Complexes 2 and 3 crystallize in the monoclinic system, P21/c space group; each asymmetric unit consists of one cobalt(II), two corresponding deprotonated ligands, one lattice water, and one methanol. The central cobalt is also four-coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligand, forming a distorted tetrahedral geometry.  相似文献   

16.
A series of novel heteronuclear Ln(III)-CU(II) complexes with noncyclic polyether-amino acid Schiff base were synthesized. The general formula is (LnCu2(H2TALY) (NO3)5] (NO3)2·nH2O (Ln= La, Nd, Sm, Gd,n = 4; Ln = Yb, Y,n = 3), where H2TALY = tetraglycol aldehyde bis-lysine Schiff base. It is the first time to report the synthetic method for this new Cu(II) complexes and Ln(III)-Cu(II) heteronuclear complexes. The complexes were characterized by elemental analysis, IR spectra. TG-DTA, magnetic susceptibility, and especially by a 500 MHz NMR spectrometer for 2D-COSY NMR. Coordination mechanism and structures of complexes have been suggested as well. Of particular interest is the potential that the novel complexes obtained may be used as a catalyst. which prompted us to investigate them. It shows 100% conversion with the viscosity-average molecular weight 120 000 for the polymerization of methyl methacrylate (MMA) without addition of any cocatalyst. Furthermore, the complexes with such aliphatic Schiff bases can be used as a good catalyst, which has been confirmed and discussed here. They may be a new kind of catalyst system with the above speciality. Project supported by the National Natural Science Foundation of China (Grant No. 29671026) and Natural Science Foundation of Zhejiang Province (Grant No. 296062) and the Laboratory of MRAMP (Grant No. 971502).  相似文献   

17.
New organotin(IV) complexes with empirical formula Sn(SNNNS)R2, where SNNNS is the dianionic form of 2,6-diacetylpyridine Schiff bases of S-methyldithiocarbazate (H2dapsme) or S-benzyldithiocarbazate (H2dapsbz) and R = Ph or Me, have been prepared and characterized by IR, UV-Vis, NMR and Mössbauer spectroscopic techniques and conductance measurements. The molecular structures of the Sn(dapsme)R2 (R = Ph and Me) have been determined by single crystal X-ray diffraction techniques. Both complexes have a distorted pentagonal-bipyramidal geometry in which the tin is coordinated by a dinegatively charged pentadentate chelating agent via pyridine nitrogen, two azomethine nitrogens, and two thiolate sulfurs. The five donors (N3S2) provided by the Schiff base occupy the equatorial plane close to a pentagonal planar array while the carbanion ligands occupy axial sites.  相似文献   

18.
Two series of salicylaldimines have been synthesized that consist of model compounds with terminal methylenic chains and reactive compounds in which the terminal chains have been modified with acrylate groups. The dicarbonylrhodium(I) complexes of these systems were prepared by reacting the ligands with the dimer [RhCl(cod)]2 and CO. Characterization of the metal‐containing acrylates by 1H NMR spectroscopy revealed that the Rh(I) can coordinate to the terminal double bond to produce pentacoordinated complexes. Furthermore, investigation of the mesogenic properties of the complexes revealed that the bulkiness of the metallic center requires the presence of at least a three‐ring aromatic core to avoid the suppression of liquid crystallinity. The study was extended to include the side‐chain polymers obtained from the acrylate‐functionalized Schiff bases. Chelation of the preformed polyacrylate with low percentages of Rh(I) emerged as the best strategy to prepare Rh(I)‐containing polyacrylates. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4466–4477, 2000  相似文献   

19.
Two bidentate Schiff bases, 5-methyl-2-p-tolyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L1) and 2-(3-chloro-phenyl)-5-methyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L2), were synthesized by condensation of 4-acyl pyrazolones with p-toluidine in ethanol. These ligands have been characterized by elemental analysis, infrared (IR), 1H NMR, and mass spectra. A single crystal molecular structure of ligand L2 was also solved. Nickel(II) complexes of these ligands with general formula [ML2?·?2H2O] have been prepared by the interaction of aqueous solution of Ni-acetate with ethanolic solution of the appropriate ligand. The complexes were separated, analyzed, and their structures were elucidated on the basis of elemental analysis, Ni(II) determination, IR, UV-Vis, conductance, mass, and TGA-DTA data. Octahedral structure was proposed for the synthesized complexes.  相似文献   

20.
Ruthenium(III) complexes of three tetradentate Schiff bases with N2O2 donors formulated as [RuCl(LL1)(H2O)], [RuCl(LL2)(H2O)] and [RuCl(LL3)(H2O)] were synthesized and characterized by elemental analyses, molar conductance, FTIR, and electronic spectral measurements. The FTIR data showed that the tetradentate Schiff base ligands coordinate to Ru ions through the azomethine nitrogen and enolic oxygen. The antioxidant activities of the complexes were investigated through scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. The DPPH activity for [RuCl(LL2)(H2O)] with IC50 = 0.031 mg mL?1 was higher than the values obtained for the other Ru(III) compounds. The study revealed that the synthesized Ru(III) complexes of the tetradentate Schiff base exhibited strong scavenging activities against DPPH and moderate against ABTS radicals. In addition, the antiproliferative studies of the complexes were also tested against human renal cancer cells (TK10), human melanoma cancer cells (UACC62), and human breast cancer cells (MCF7) using the SRB assay. The results indicated that the Ru(III) complexes showed low anticancer activities against the tested human cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号