首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Isothermal oxidation behavior of chromium with and without nanometric sol-gel CeO2 coating is studied at 1000℃ in air. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to examine the surface morphology and microstructure of their oxide films. It is found that ceria coating greatly improves the anti-oxidation property of chromium. Laser Raman spectrometer and X-ray diffraction spectrometer (XRD) are also used to study the stress level in oxide films formed on ceria-coated and ceria-free Cr. The difference in oxidation behavior is mainly attributed to the fact that ceria greatly reduces the growth speed and grain size of Cr2O3 film, and this fine grain-sized Cr2O3 film probably has better high temperature plasticity, i.e. oxide film can relieve parts of compressive stress by means of creeping. XRD and Raman testing results both show the stress declination due to nano-CeO2 application, and their deviation is analyzed concerning to the rare earth effect.  相似文献   

2.
The isothermal and cyclic oxidizing kinetics of Co-40Cr alloy and its lanthanum ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM)) were used to examine the oxidized film's morphology and the structure after oxidation. Secondary ion mass spectrum (SIMS) method was used to examine the binding energy change of chromium caused by La-doping and its in?uence on formation of Cr2O3 film. Laser Raman spectrum was used to examine the tress changes within oxidized films. It was found that lanthanum implantation remarkably reduced the isothermal oxidizing rate of Co-40Cr and improved the anti-cracking and anti-spalling properties of Cr2O3 film. The reasons were that the implanted lanthanum reduced the grain size and internal stress of Cr2O3 oxide, increased the high temperature plasticity of oxidized film. Lanthanum mainly existed in the outer surface of Cr2O3 film in the forms of fine La2O3 and LaCrO3 spinel particles.  相似文献   

3.
Cr‐Mn‐O spinel coating was prepared on the surface of cobalt‐based superalloy GH605 via an in‐situ oxidation method in H2O‐H2 environment. The composition, morphology, and chemical value state of the oxide spinel coatings were investigated by SEM, EDS, XRD, Raman spectra, and XPS. It indicated that the morphology of coating varied with oxidation temperature, and granular surface appeared when oxidation temperature increased to 1100°C. The formed Cr‐Mn‐O spinel coating was composed of Cr2O3 and MnCr2O4, and the thickness increased significantly with oxidation temperature. In the coating, Cr element existed in the state of Cr3+ ions and Cr6+ ions, while Mn element only existed in the form of Mn2+ ions.  相似文献   

4.
Catalytically active Pt-containing oxide composites on aluminum have been prepared by plasma electrolytic oxidation (PEO) and by additional modification of the resulting coating by impregnation with an aqueous solution of chloroplatinic acid followed by calcination. The oxide film/metal composites have been characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopy. The modified films contain the γ-Al2O3 and Pt crystalline phases. Platinum in the surface and subsurface layers is in the Pt0 state. There are platinum-rich areas on the surface of the PEO films. A higher catalytic activity in CO oxidation into CO2 is shown by the samples whose oxide film contains nickel and copper along with platinum.  相似文献   

5.
Aluminum oxide (Al2O3) and chromium oxide (Cr2O3) nanoparticles were synthesized by thermolysis of metal-organic frameworks (MOFs). Further O2 plasma treatment is required to obtain high crystalline quality metal oxides. The composition and morphology of metal oxide nanoparticles were confirmed by powder X-ray diffraction and scanning electron microscopy characterization, respectively. The quality of synthesized metal oxides was also examined by observing the surface-enhanced Raman scattering (SERS) spectra of methyl orange adsorbed on Al2O3 and Cr2O3. The observed SERS effect can be ascribed to charge-transfer (CT) resonance effect between methyl orange and metal oxide surfaces. UV–vis absorption spectra and DFT calculations of metal oxide- methyl orange complexes have confirmed that the observed SRS effect is due to CT resonance between the metal oxide nanoparticles and the adsorbed methyl orange molecules.  相似文献   

6.
《Thermochimica Acta》1986,103(1):193-199
The oxidation of chromium carbide has been studied gravimetrically. Products of reaction have been examined by gas sorption analysis and X-ray diffraction. Changes in phase composition, crystallinity and crystallite size are correlated with the reaction conditions.Chromium carbide, Cr3C2, differs from most of the transitional metal carbides in that it forms stable films of metal oxide (Cr2O3) around the remaining carbide particles, inhibiting further oxidation. Thus chromium carbide additive inhibits oxidation of interstitial zirconium carbide, ZrC, by forming some chromic oxide which stabilises the zirconia (ZrO2) layer around the remaining carbide crystallites.  相似文献   

7.
The transformations in nanosized chromium layers at different layer thicknesses (d = 14–154 nm) and thermal treatment temperatures (T = 673–873 K) were studied by optical spectroscopy, microscopy, and gravimetry. The kinetic curves of conversion at different chromium film thicknesses and treatment temperatures are well approximated by the linear, inverse logarithmic, cubic, and logarithmic functions. The contact potential difference for Cr and Cr2O3 films and photo-emf for Cr-Cr2O3 systems were measured. An energy band diagram of Cr-Cr2O3 systems was constructed. A model of thermal transformation was constructed for Cr films that included the stages of oxygen adsorption, charge carrier redistribution in the contact field of Cr-Cr2O3, and chromium(III) oxide formation.  相似文献   

8.
Ni‐based superalloys with niobium (Nb) or/and yttrium (Y) were prepared by vacuum melting. The oxidation kinetics of these alloys was studied by thermogravimetry at 800 °C for 100 h in static air. Morphology of oxides was studied using SEM, and the composition was analyzed by X‐ray diffraction. Energy‐dispersive X‐ray spectrometer was employed to examine the linear element distribution of the cross section of the oxidation films. Results showed that the oxidation kinetics all followed a parabolic law at different stages. The oxide films were mainly comprised of Cr2O3, NiCr2O4, Al2O3 and TiO2. All the oxide films exhibited layered structure owing to different oxidation stages. With the addition of Nb or Y, the high‐temperature oxidation resistance of the superalloy was improved significantly and the surface morphology of the oxidation film was ameliorated. The comprehensive effect of Nb and Y was remarkable in improving the high‐temperature oxidation resistance of Ni‐based alloys. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Chromium nitride and chromium oxide were deposited by arc PVD and APS on steel substrates to be worn in a testing set up simulating the abrasion process of a screw rotor compressor. The damage of Cr x N is more severe than that of Cr2O3. The abrasive particles were collected on glassy carbon with a Batelle impactor and analyzed by AES and REM. Particles from the Cr x N coating are totally oxidized, in contrast to particles from Cr2O3 which are not chemically influenced. No oxidation can be detected on the surface of the treated Cr x N coating. The Cr2O3 coating is not affected either.Dedicated to Professor Dr. rer. nat. Dr.h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

10.
Cr-SBA-16 mesoporous silica heterogeneous catalysts (Si/Cr = 7, 14, and 28) were successfully synthesized by one-pot hydrothermal method at low acidic medium. The catalysts were characterized by means of X-ray diffraction (XRD), N2 adsorption-desorption at 77 K, Fourier Transform Infrared (FTIR), X-ray photoelectron (XPS) and Diffuse Reflectance UV–Vis (DRS) Spectroscopies, Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. Herein, Cr-SBA-16 catalysts are evaluated in the selective catalytic oxidation of benzyl alcohol derivatives using H2O2 as oxidant. From XPS and UV–Vis (DRS) spectroscopies the molar ratios between Cr6+/Cr3+ are found to increase versus chromium loading in the following order: Cr-SBA-16(28) < Cr-SBA-16(14) < Cr-SBA-16(7). Hence the highest Cr6+ in tetrahedrally environment is observed for Si/Cr = 7. We demonstrated for the first time that the selective catalytic oxidation of benzyl alcohol (BzOH) using H2O2 over Cr-SBA-16 occurs through noncompetitive adsorption mechanism and the reaction is pseudo-first order to BzOH. The activity of the reaction depends on the symmetry of chromium species, herein, high activity is observed for tetrahedral chromium species in Cr-SBA-16(7). The absence of any chromium ions in the filtrate shows no chromium leaching from the silica framework.  相似文献   

11.
[M(NH3)4]A (M=Pt, Pd; A=CrO4, Cr2O7) and [Pt(NH3)4(NO2)(Cr2O7)]NO3 complex salts were synthesized and characterized by a number of physicochemical methods of analysis (IR, single-crystal and powder XRD, and simultaneous thermogravimetry and differential scanning calorimetry with evolved gas analysis mass spectrometry). Thermolysis of the salts obtained in a hydrogen atmosphere proceeds with the partial reduction of chromium to a metallic state and the formation of MxCr1−x (M=Pt, Pd) metal solid solution with a chromium content of up to 22 at % and chromium(III) oxide. The thermal decomposition of salts in an inert and oxidizing atmosphere passes through the formation stage of the MCrO2 phase with the delafossite structure followed by its subsequent decomposition into chromium(III) oxide and noble metal. Nanosized Pt−Cr2O3 and Pd−Cr2O3 composites obtained by the thermolysis of precursor salts in air at 500 °C and being held at this temperature for 1 h showed a high catalytic activity in the CO total oxidation (TOX) and preferential oxidation in the excess of hydrogen (PROX) processes compared with that of monometallic Pt and Pd powders.  相似文献   

12.
Chromium oxides of loading ranges from 5 to 15 wt. % on γ-alumina were tested. The optimum chromium oxide loading for the catalytic oxidation is 10 wt. %. Catalysts were investigated by BET, Raman spectroscopy and XPS. The formation of crystalline Cr2O3 has a detrimental effect on catalysts in CH2Cl2 oxidation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The application of nonstoichiometric chromium oxide-based thin film cathodes in lithium rechargeable and primary batteries operating at high rates has been demonstrated. Films of varying composition have been obtained by anionic Cr (VI) species electrodeposition on a 1X18N10Т grade stainless steel cathode from fluoride-containing electrolytes. The effect of film doping by Li+ ions during its electrosynthesis has been сonsidered. As-prepared films were studied by scanning and transmission electron microscopies, 3D optical profiler, thermogravimetric analysis, chemical analysis, and X-ray diffraction (XRD). The main phase components of the electrodeposited films regardless of Li+ in an electrolyte are Cr2O3, α-CrOOH, β-CrOOH, and metallic chromium as shown by XRD pattern refinement. The electrochemical reduction rate in a non-aqueous electrolyte (1 M LiClO4 in PC/DME) correlates with the chromium oxide-hydroxide component content of film. Primary CrO x -Li CR2325 mock-up cathode coating can be discharged in a pulsed mode at 10 Ω external resistance with 80–84 mA cm?2 current densities for 10–100 ms. Thin film cathodes electrodeposited in the presence of lithium ions become rechargeable when the lithium content of the film reaches 0.02 wt.%. Mock-ups of CR2325 coin battery with a thin film cathode doped with lithium ions can be discharged more than 40 times with 136 mAh g?1 specific capacity, 461 Wh kg?1 specific energy and 154 W kg?1 power density at 30 kΩ external resistance. The simplicity of thin film preparation makes this technology promising for thin film lithium batteries.  相似文献   

14.
A novel Cu0.5Co0.5Fe2O4@Arg–GO catalytic system was successfully prepared by immobilization of copper substituted cobalt ferrite nanoparticles on arginine–grafted graphene oxide nanosheets, in which ferrite moiety acts as an oxidation catalyst and arginine has the role of base catalyst. Also, arginine amino acid was used to modify the surface of graphene oxide nanosheets which the prepared support can improve dispersion and uniform loading of nanoparticles. The prepared nanocomposite was characterized by flame atomic absorption spectroscopy (FAAS), inductively coupled plasma optical emission spectrometer (ICP–OES), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT–IR), ultraviolet–visible spectroscopy (UV–vis), Raman spectroscopy, thermogravimetric analysis (TGA), x–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The prepared Cu0.5Co0.5Fe2O4@Arg–GO nanocomposite was used as an efficient catalyst for one–pot tandem oxidative synthesis of 2–phenylbenzimidazole derivatives in good yields.  相似文献   

15.
Silicon oxide films are deposited in atmospheric-pressure (AP) He/O2/HMDSO plasma excited by a 150?MHz VHF power using a cylindrical rotary electrode. The atomic bonding configurations and deposition rate are studied by controlling the O2 concentration (O2/HMDSO source ratio) and VHF power density, the other parameters being maintained constant. Under the addition of 0.03?% O2 to the process gas mixture (O2/HMDSO????0.09), AP-VHF plasma greatly enhances the fragmentation and oxidation of HMDSO, so that an almost inorganic film is obtained at a very high deposition rate of 33?nm?s?1. A silicon oxide coating on a polycarbonate pane is demonstrated with no significant thermal deformation of the pane, showing that AP-VHF plasma would be an efficient coating tool for polymer substrates.  相似文献   

16.
Small chromium oxide particles (Cr2O3, CrO2) supported on titanium dioxide and oxidized Ag(111) single crystals were investigated by X-ray absorption spectroscopy at the oxygen K-edge. The spectra were collected in the electron yield mode in order to increase the surface sensitivity. The shape of the sharp split White line (WL) in the O K-edges spectra depended strongly on the oxidation state of the chromium ions in the probed samples suggesting that the WL can be used as an indicator of different environments in the supported chromium oxide films. On the other hand, the O K-edges of the oxidized Ag(111) crystal indicated that the formation of the distinct oxygen species at the surface and in the near-surface region was accompanied by a different silver-to-oxygen covalent interaction. Received: 15 July 1997 / Revised: 22 December 1997 / Accepted: 29 December 1997  相似文献   

17.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

18.
用水热法制备了具有典型锐钛矿晶型的TiO2纳米材料,采用Cr(NO3)3对TiO2薄膜电极进行修饰改性。用X射线衍射(XRD)、扫描电子显微镜(SEM)和光电子能谱(XPS)测试电极的物相及表面结构,结果显示TiO2薄膜表面包覆一层粒径较大的氧化铬颗粒,整个电极仍保持均匀的多孔结构。电流-电压(I-V)曲线测试结果显示,改性后最佳电极的短路电流和光电转换效率分别比改性前提高了31.1%和40.4%。用电化学阻抗谱(EIS)测试电池的界面特性,从测试结果可以看出,相同偏压下,改性后电池的TiO2/染料/电解质界面电阻更大,说明氧化铬包覆层在一定程度上抑制了界面的电子复合,改善了电池的光电输出特性。  相似文献   

19.
We have been exploring the utilization of a simple and fast microwave-induced solution combustion synthesis technique for the preparation of various ceria-based mixed oxides for different catalytic applications. In our comprehensive investigation, CeO2–SiO2 (MWCS), CeO2–TiO2 (MWCT), CeO2–ZrO2 (MWCZ) and CeO2–Al2O3 (MWCA) mixed oxides were synthesized by solution combustion synthesis method using microwave dielectric heating and employed for CO and soot oxidation applications. The intricate relationship between ceria and other supporting oxides has been explored with the help of various analytical techniques namely, X-ray diffraction (XRD), temperature programmed reduction/oxidation (TPR/TPO), temperature programmed desorption (TPD) of ammonia and CO2, Raman spectroscopy (RS), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), BET surface area and thermogravimetry analysis (TGA) methods. XRD results revealed amorphous nature of the material in case of ceria-silica mixed oxide and formation of a specific cubic fluorite type Ce0.5Zr0.5O2 solid solution in the case of ceria-zirconia mixed oxide. Ceria-titania and ceria-alumina mixed oxides exhibited diffraction lines only due to crystalline ceria. Zirconia-based mixed oxide exhibited a lower reduction temperature and better redox properties compared to other samples. TPD of ammonia and CO2 results revealed superior acid–base properties for MWCS mixed oxide. TGA measurements indicated a complete combustion in all preparations. RS results suggested defective structure of mixed oxides resulting in the formation of oxygen vacancies. XPS results revealed that ceria-zirconia mixed oxide contained more Ce3+ compared to other oxides. Among all the mixed oxides, the MWCZ sample exhibited a higher oxygen storage capacity, and better CO and soot oxidation activities. All these interesting findings have been elaborated in this publication.  相似文献   

20.
The potential of radiofrequency glow discharge optical emission spectrometry (rf-GD-OES) for the quantification and the solid-state speciation of metal oxide films has been investigated in this work. Two types of oxide coatings, an iron oxide film deposited on silicon and a chromate conversion coating (CCC), were studied at 700 Pa of pressure and 30 W of forward power. The metal to oxygen ratios in the quantitative depth profiles (Fe/O and Cr/O, respectively) were used to evaluate the oxidation states of iron and chromium in the oxide films, demonstrating the capability of GD-OES technique for depth-resolved solid-state speciation. Furthermore, the effect of glow discharge sputtering on the samples surface in terms of modifications in the surface morphology and species transformations, were investigated by using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The iron and chromium oxidation states were carefully studied by XPS at the original samples surface and at the bottom of GD craters, and a systematic reduction of metal elements was observed after rf-GD-OES analysis. In the case of thin oxide films, preferential sputtering can be considered as a critical factor since oxygen atoms can be preferentially sputtered, leaving a metal-enriched surface and, therefore, promoting the reduction of metal elements. In the present study preferential sputtering was found to be sample dependent, changing the proportion of the metal reduction in the oxide film with its composition. Additionally, alternative sputter-depth-profiling techniques such as secondary ion mass spectrometry (SIMS), femtosecond laser ablation (fs-LA), and XPS ion gun were used for the analysis of the CCC in order to evaluate the reduction of Cr6+ to Cr3+ depending on the sputtering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号