首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinolones are degraded by light with loss of their antimicrobial activity, generating active species or radicals. Evidence exists that some fluoroquinolones (lomefloxacin, fleroxacin and enoxacin) induce damage to the cellular membrane and DNA cleavage by photosensitization. In this study, the genotoxic potential of the quinolones ofloxacin, nalidixic acid and ciprofloxacin (three antimicrobials frequently used in therapy) was evaluated upon irradiation with UV light by using the comet assay on cells of the Jurkat line. The results demonstrate that there are significant differences between the control groups (positive control with 50 microM H2O2, negative controls without drug and with and without irradiation) and the groups of irradiated quinolones (ofloxacin 2.76 x 10(-5) M, nalidixic acid 2.15 x 10(-4) M and ciprofloxacin 2.01 x 10(-5) M), indicating that, at the dose of irradiation employed (necessary to produce 50% photodegradation), the photodecomposition of the quinolones enhanced DNA damage. The unirradiated drugs also exhibited genotoxicity significantly different from that of the negative control.  相似文献   

2.
Photodynamic therapy (PDT) may cause tumour cell destruction by direct toxicity or by inducing microcirculatory shutdown. Protoporphyrin IX generated from 5-aminolevulinic acid (ALA) has been widely used as an endogenous photosensitiser in PDT. However, the hydrophilic nature of the ALA molecule limits its penetration through the stratum corneum of the skin and cell membranes and thus, ALA alkyl-esters have been developed to improve ALA permeation.The aim of this work was to study Protoporphyrin IX synthesis from ALA and its derivatives ALA methyl ester (Me-ALA) and ALA hexyl ester (He-ALA) in the microvascular endothelial cell line HMEC-1 derived from normal skin, and to evaluate their response to PDT.We found that lower light doses are required to photosensitise HMEC-1 endothelial cells than to photosensitise PAM212 transformed keratinocytes, showing some possible selectivity of ALA-PDT for vascularisation in skin.Employed at concentrations leading to equal Protoporphyrin IX synthesis, ALA, He-ALA and Me-ALA presented the same efficacy of HMEC-1 photosensitisation. However, He-ALA was a promising compound for the use in the enhancement of Protoporphyrin IX in HMEC-1 cells employed at low concentrations at both short and long time exposures whereas Me-ALA should be employed at high concentrations and longer time periods in order to surpass the Protoporphyrin IX levels obtained with ALA. The advantage of Me-ALA over ALA was based on its lower dark toxicity.This is the first work to report vascular cell photosensitisation employing alkyl-esters of ALA, and we demonstrated that these derivatives could exert the same effect as ALA and under certain conditions enhance photosensitisation of vasculature.  相似文献   

3.
4.
Photodynamic therapy (PDT) efficacy is a complex function of tissue sensitivity, photosensitizer (PS) uptake, tissue oxygen concentration, delivered light dose and some other parameters. To better understand the mechanisms and optimization of PDT treatment, we assessed two techniques for quantifying tissue PS concentration and two methods for quantifying pathological tumor damage. The two methods used to determine tissue PS concentration kinetic were in vivo fluorescence probe and ex vivo chemical extraction. Both methods show that the highest tumor to normal tissue PS uptake ratio appears 4 h after PS administration. Two different histopathologic techniques were used to quantify tumor and normal tissue damage. A planimetry assessment of regional tumor necrosis demonstrated a linear relationship with increasing light dose. However, in large murine tumors this finding was complicated by the presence of significant spontaneous necrosis. A second method (densitometry) assessed cell death by nuclear size and density. With some exceptions the densitometry method generally supported the planimetry results. Although the densitometry method is potentially more accurate, it has greater potential subjectivity. Finally, our research suggests that the tools or methods we are studying for quantifying PS levels and tissue damage are necessary for the understanding of PDT effect and therapeutic ratio in experimental in vivo tumor research.  相似文献   

5.
The alkaline and neutral comet assays have been widely used to assess DNA damage and repair in individual cells after in vivo or in vitro exposure to chemical or physical genotoxins. Cells processed under neutral conditions generate comets primarily from DNA double strand breaks, whereas under alkaline conditions, comets arise from DNA single and double strand breaks and alkali-labile lesions. A modified version of the alkaline comet assay, as described here, used silver stain to visualize the comets and a Gelbond base to facilitate the manipulation and processing of samples. To demonstrate how these modifications improve the assay, fibroblasts derived from both normal and Xeroderma pigmentosum (Xp) individuals were exposed to simulated solar radiation and the resulting DNA damage and repair evaluated and compared with results from the relevant literature. Comets from normal fibroblasts reached their maximum length at about an hour after irradiation. Dose-dependent increases in comet length were observed up to at least 360 mJ/cm2. In contrast, comet lengths from repair deficient Xp fibroblasts were shorter than normal cells reflecting their reduced capacity to generate single strand breaks by the excision of DNA dimers. For incubation times of more than 1 h, comet lengths from normal fibroblasts underwent a time-dependent decrease, supporting the contention that this change was related to the ligation step in the DNA repair process. These changes were compatible with the model of DNA damage and repair established by others for ultraviolet radiation.  相似文献   

6.
We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratio<0.1 category, the lowest grade. This finding was observed consistently throughout the 7-day post-irradiation period. We suggest that the Ratio values of individual cells can be used as an index of irradiation history and conclude that the DNA comet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.  相似文献   

7.
Photodynamic therapy (PDT) kills cells via the production of singlet oxygen and other reactive oxygen species. PDT causes chromosomal damage and mutation to cultured cells. However, DNA damage does not contribute to the phototoxic effect. To study the effect of Photofrin-PDT-induced DNA damage, we used the comet assay in combination with endonuclease III and formamidopyrimidine DNA glycosylase and a human keratinocyte cell line to investigate photogenotoxicity and its prevention by tocopherol (TOC). This study shows that PDT induced DNA damage in HaCaT cells at doses allowing cells to survive 7 days after irradiation. alpha-TOC did not prevent the acute cell lysis caused by Photofrin-PDT but did prevent Photofrin-PDT-induced DNA damage. However, the concentration of TOC that conferred protection (100 microM) was higher than is detected in human serum. Base oxidation was also measured using the comet assay. Although TOC could prevent frank DNA strand breaks caused by PDT, it was unable to decrease the level of base oxidation as revealed by enzyme-sensitive sites. It is suggested that the potential genotoxic risk from laser-PDT could be low, and that topical micro-TOC at a high concentration may be useful in preventing some types of DNA damage without preventing acute photolysis after Photofrin-PDT.  相似文献   

8.
We investigated the role of different reactive oxygen species (ROS) in ultraviolet A (UVA)-induced DNA damage in a human keratinocyte cell line, HaCaT. UVA irradiation increased the intracellular levels of hydrogen peroxide (H2O2), detected by a fluorescent probe carboxydichlorodihydrofluorescein, and caused oxidative DNA damage, single strand-breaks and alkali-labile sites, measured by alkaline single cell gel electrophoresis (comet assay). Superoxide anion (O2*-) was a likely substrate for H2O2 production since diethyldithiocarbamate (DDC), a superoxide dismutase blocker, decreased the level of intracellular H2O2. Hydrogen peroxide was shown to play a central role in DNA damage. Increasing the intracellular levels of H2O2 with aminotriazole (AT) (a catalase blocker) and buthionine sulfoximine (BSO) (an inhibitor of glutathione synthesis) potentiated the UVA-induced DNA damage. Exogenous H2O2 was also able to induce DNA damage. Since H2O2 alone is not able to damage DNA directly, we investigated the significance of the H2O2-derived hydroxyl radical (*OH). Addition of FeSO4, that stimulates *OH formation from H2O2 (Fenton reaction) resulted in a twofold increase of DNA-damage. Desferrioxamine, an iron chelator that blocks the Fenton reaction, prevented UVA-induced DNA damage. We also employed a panel of less specific antioxidants and enzyme modulators. Sodium selenite (Na-Se) present in glutathione peroxidase and thioredoxin reductase and addition of glutathione (GSH) prevented DNA-damage. Tocopherol potently prevented UVA-and H2O2-induced DNA damage and reduced intracellular H2O2 -levels. Ascorbic acid reduced H2O2 production, but only partly prevented DNA damage. Singlet oxygen (1O2) did not seem to play an important role in the UVA-induced DNA-damage since the specific 1O2 scavenger sodium azide (NaN3) and the less specific 1O2 scavenger beta-carotene did not markedly prevent either DNA-damage or H2O2 production. In conclusion the conversion of H2O2 to *OH appears to be the most important step in UVA-induced generation of strand breaks and alkali-labile sites and the bulk H2O2 appears to originate from O2*- generated by UVA irradiation.  相似文献   

9.
In this study the endogenous fluorescence signal attributed to reduced nicotinamide adenine dinucleotide (NADH) has been measured in response to photodynamic therapy (PDT)-induced damage. Measurements on cells in vitro have shown that NADH fluorescence decreased relative to that of controls after treatment with a toxic dose of PDT, as measured within 30 min after treatment. Similarly, assays of cell viability indicated that mitochondrial function was reduced immediately after treatment in proportion to the dose delivered, and the proportion of this dose response did not degrade further over 24 h. Measurements in vivo were used to monitor the fluorescence emission spectrum and the excited state lifetime of NADH in PDT-treated tissue. The NADH signal was defined as the ratio of the integrated fluorescence intensity of the 450 +/- 25 nm emission band relative to the fluorescence intensity integrated over the entire 400-600 nm range of collection. Measurements in murine muscle tissue indicated a 22% reduction in the fluorescence signal immediately after treatment with verteporfin-based PDT, using a dose of 2 mg/kg injected 15 min before a 48 J/cm2 light dose at 690 nm. Control animals without photosensitizer injection had no significant change in the fluorescence signal from laser irradiation at the same doses. This signal was monotonically correlated to the deposited dose used here and could provide a direct dosimetric measure of PDT-induced cellular death in the tissue being treated.  相似文献   

10.
A quantitative assessment of the light field produced by a Waldmann PDT 1200 lamp is presented. A photodiode detector array capable of measuring a beam diameter of 30 cm was used to map the light field. The irradiance was measured as a function of voltage. For lamp-detector distances of 10 cm (central axis irradiance = 250 mW/cm2), the spatial profile of irradiance was typically Gaussian. For lamp-detector distances of 30 cm (central axis irradiance = 79 mW/cm2), the spatial profile appeared more hemispherical in shape but with some asymmetry. The relative percentage variation between the maximum and minimum irradiance with respect to the central axis irradiance was approximately 13% and 3%, respectively, for a beam width of 12 cm. Beyond a lamp-detector distance of 50 cm (central axis irradiance = 32 mW/cm2), the spatial profile of irradiance was observed to become more crater-like in structure, with a minimum on the central axis and an approximately symmetric peak at a radial distance of 9 cm from the center. The relative percentage variation of this peak irradiance with respect to the central axis irradiance was approximately 17%. At lamp-detector distances of 70 and 90 cm (central axis irradiance = 19 and 13 mW/cm2, respectively), the beam's profile was asymmetric, and the irradiance was observed to increase from the center to a radial distance of 15 cm (beam width 30 cm). For a lamp-detector distance of 70 and 90 cm, the relative percentage variation between the maximum irradiance and the central axis irradiance was approximately 25% and 35%, respectively.  相似文献   

11.
This study was set up to determine the suitability of the early life stage (ELS) alkaline comet assay for the detection of DNA strand breaks induced by genotoxicants in whole organism. This assay was performed on cells of medaka 2 days posthatch (dph). An efficient procedure for cell dissociation using enzymatic and mechanical digestion was developed. This protocol ensures 80% viability of cells and low DNA damage background. Cells from 2 dph medaka larvae were exposed in vitro to model genotoxicants, hydrogen peroxide, cadmium, and fluoranthene, followed by comet assay analysis. Results show a significant increase in the percentage of DNA damage of dissociated cells by all the tested compounds when compared to controls. The assay was also performed in vivo on medaka larvae (2 dph) exposed for 24 h to waterborne cadmium or fluoranthene. Significant induction of DNA damage levels were observed following larvae exposure to cadmium and fluoranthene at concentrations of 0.1 and 50 μM, respectively. This study demonstrates that cells of embryo life stage medaka respond to known DNA damaging agents and that the ELS comet assay may be a useful biomarker to detect DNA strand breakage in whole body of pluricellular organism induced by a range of agents. This technique may provide a sensitive, nonspecific endpoint of genotoxicity as part of ELS toxicity test.  相似文献   

12.
Measurement of autoradiographic grains produced by the decay of incorporated radioisotopes is often used for a quantitative assay of the rate of DNA replication and DNA repair in cells or tissues. However, visual grain counting by microscopic observation is time-consuming and tedious process. Recently, Kraemer et al. reported that automated measurement of grains in cultured human cells may be facilitated by using appropriate grain counting instruments. Under their experimental conditions using Kodak NTB-3 emulsion, instrument-determined grain number per nucleus was proportional to visual counts up to 30 grains, and then leveled off at much larger visual counts. The saturation phenomenon was due to counting-loss by the instrument caused by overlapping of neighboring grains. To prevent the counting-loss, we have used in the present study Japanese Sakura NR-M2 emulsion which is less sensitive to radiation exposure than Kodak NTB-3, thereby yielding smaller size of grains per radioactive decay. Samples were prepared from cultured skin fibroblasts derived from normal individuals and xeroderma pigmentosum (XP) patients defective in DNA repair. These cells were irradiated with 254 nm UV incubated for 3 h with culture medium containing 3H-thymidine, and autoradiograms were made by dipping in Sakura NR-M2 emulsion. The number of grains as well as grain surface area per nucleus was measured by using ARTEK CYTO TALLY MODEL 900 counting instrument, and compared with visual counts. The results showed that, under our optimum condition, the instrument-determined number of grains was directly proportional to visual counts, at least up to 150 grains per nucleus, with a correlation coefficient of 0.971.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
OBJECTIVE: Our study was designed to investigate 5-aminolevulinic acid (ALA) as a candidate for intraperitoneal photodynamic therapy (IP-PDT). The toxicity of IP-PDT and the effects of IP-PDT on abdominal and pelvic organs, particularly the small intestine, were investigated after ALA administration and illumination with violet laser light. STUDY DESIGN AND RESULTS: The toxicity of IP-PDT was evaluated in Fischer 344 rats in two ways. In the first part of the study local PDT effects on the intestine were analyzed histologically. Violet laser light (lambda: 406-415 nm) was applied as a 2 cm diameter spot on the intestine 3 h after intraperitoneal (i.p.) administration of 50 mg/kg ALA. (A) Histological tissue samples were taken 0 min, 6 h and 1, 2 and 3 days after treatment (optical dose 3.2 J/cm(2)). Immediately after local PDT (3.2 J/cm(2), 50 mg/kg ALA) showed no effect on the intestine. However, 6 h post PDT there was complete destruction of the mesothelial lining and the outer (longitudinal) smooth muscle. Ganglion cells of the myenteric (Auerbach) plexus were also destroyed. The inner circular smooth muscle, the muscularis mucosa and the lamina propria were unharmed. Marked lymphectasia was present at this time. (B) To determine the threshold light dose of tissue destruction caused by PDT, different optical doses (1.6, 3.2, 6.4 J/cm(2)) were administered and histologic analysis of tissue samples were obtained 1 day post treatment. Destruction of the entire external musculature, submucosal structures and muscularis mucosa of the intestine at the illumination site could be observed above 1.6 J/cm(2) (50 mg/kg ALA). In the second part of the study whole peritoneal cavity PDT (WPC-PDT) was performed by illumination of the whole peritoneal cavity with 1.6 J/cm(2) violet light 3 h after ALA administration using different drug doses (200, 100 and 50 mg/kg). WPC-PDT showed lethal toxicity with a drug dose above 50 mg/kg ALA at 1.6 J/cm(2). The probable cause of death in the first 3 days after IP-PDT was rhabdomyolysis, whereas when death occurred at longer time intervals, megaintestine associated with significant damage could be observed; however, without perforation of the intestinal wall. CONCLUSION: In rats WPC-PDT with 50 mg/kg ALA, 1.6 J/cm2 at lambda=415 nm was the maximum tolerable light dose. This dose is likely to be above the threshold of destruction of ovarian cancer micrometastasis.  相似文献   

14.
The phototoxic effect of meso-tetra-hydroxyphenyl-chlorin (mTHPC)-mediated photodynamic therapy (PDT) on human microvascular endothelial cells (hMVEC) was compared with that on human fibroblasts (BCT-27) and two human tumor cell lines (HMESO-1 and HNXOE). To examine the relationship between intrinsic phototoxicity and intracellular mTHPC content, we expressed cell survival as a function of cellular fluorescence. On the basis of total cell fluorescence, HNXOE tumor cells were the most sensitive and BCT-27 fibroblasts the most resistant, but these differences disappeared after correcting for cell volume. Endothelial cells were not intrinsically more sensitive to mTHPC-PDT than tumor cells or fibroblasts. Uptake of mTHPC in hMVEC increased linearly to at least 48 h, whereas drug uptake in the other cell lines reached a maximum by 24 h. No difference in drug uptake was seen between the cell lines during the first 24 h, but by 48 h hMVEC had a 1.8- to 2.8-fold higher uptake than other cell lines. Endothelial cells showed a rapid apoptotic response after mTHPC-mediated PDT, whereas similar protocols gave a delayed apoptotic or necrotic like response in HNXOE. We conclude that endothelial cells are not intrinsically more sensitive than other cell types to mTHPC-mediated PDT but that continued drug uptake beyond 24 h may lead to higher intracellular drug levels and increased photosensitivity under certain conditions.  相似文献   

15.
16.
Photosome is constituted of photolyases included in liposomes. Photolyase is a bacterial enzyme that can repair ultraviolet B (UVB)-induced cyclobutane pyrimidine dimers (CPD) in eukaryotic cells. A modified version of the alkaline comet assay has been set up to evaluate the repair activity of this enzyme after a single dose of UVB (312 nm, 0.06 J/cm2) in human keratinocytes. The formation of single strand breaks (SSB) induced by the UVA photoactivation of the enzyme (1.2 J/cm2) was inhibited by the pretreatment of the cells with 4 mM L-ergothioneine (ERT) during 30 min at 37 degrees C. To increase the sensitivity of the comet assay, an additional lysis was used with a buffer containing sodium dodecyl sulfate (0.5%) and proteinase K (0.1 mg/ml) for 60 min at 37 degrees C. Unrepaired CPD by photolyase were revealed by a second enzymatic treatment with T4 endonuclease V, a CPD specific glycosylase. UVB irradiation increased the SSB level in keratinocytes and additional T4NV treatment enhanced this SSB level by 1.5-2.0-fold confirming that CPD were the major base modifications generated by UVB irradiation. UVA-photoactivated Photosome repaired CPD lesions and decreased the SSB levels by 2.6-3.3-fold. Photosome could be an additional component of sunscreens to reduce the development of skin cancer.  相似文献   

17.
The single-cell gel/comet assay is an electrophoretic technique used to detect single-strand breaks in DNA. Damage is assessed examining individual cells under an epifluorescent microscope. UV-induced DNA damage consists mostly of the formation of pyrimidine dimers; therefore, most of the damage cannot be detected using a standard comet assay. The enzyme T4 endonuclease V breaks DNA strands at sites of pyrimidine dimers. The main objective of this work is to evaluate the comet assay to detect UV-induced damage in DNA after an initial treatment of cells with T4 endonuclease V. This work was conducted on Rhodomonas sp. (Cryptophyta), a marine unicellular flagellate. Cells of Rhodomonas sp. were exposed to 12 h visible + ultraviolet-A + ultraviolet-B (VIS + UVA + UVB) and VIS (control), with and without T4 endonuclease V. Cells exposed to VIS + UVA + UVB showed approximately 200% more damage than control if these were treated with T4 endonuclease V. Rhodomonas sp. were exposed to 3, 6, 9 and 12 h of VIS, VIS + UVA and VIS + UVA + UVB. Damage induced by VIS + UVA + UVB as detected by the comet assay increased along with exposure time. However, damage caused by VIS and VIS + UVA remained relatively constant at all times. Results of this study indicate that the comet assay is more sensitive to UV radiation damage when used in conjunction with T4 endonuclease V. This modification of the comet assay can be used as an alternative technique to detect DNA damage in single cells caused by UV radiation.  相似文献   

18.
5-Aminolevulinic acid (ALA) is an attractive photosensitizing agent for photodynamic therapy (PDT) as its photoactive derivative, protoporphyrin IX, is metabolized within 1-2 days, eliminating prolonged skin photosensitivity. However, at the maximum dose patients can tolerate by mouth, 60 mg/kg, only superficial effects are seen. This paper extends earlier studies on enhancing the effect by light fractionation. Experiments in the normal rat colon looked at the area of necrosis around a single light delivery fiber 3 days after PDT with a range of light-dose fractionation regimes. All animals were given 200 mg/kg ALA intravenously 2 h prior to light delivery (100 mW at 635 nm) and each interruption in illumination was for 150 s. The area of PDT necrosis (total dose 25 J) could be increased by a factor of 3 with a single interval after 5 J, compared with continuous illumination. Alternatively, with this single break, the total light dose could be reduced by 60% to achieve the same area of necrosis as with continuous illumination. This simple modification to PDT with ALA could markedly reduce current treatment times as well as increasing clinical efficacy.  相似文献   

19.
An important goal of photodynamic therapy (PDT) for treatment of various cancers is to shorten PDT-performing time and simultaneously enhance PDT efficacy. Here, we investigated the nontumor tissue distribution of and the tumor vascular damage caused by a new photosensitizer, DH-I-180-3, in mice with implanted EMT6 mammary tumor cells. In addition, we performed cell-based assays to evaluate the basic antitumor effect of DH-I-180-3/PDT in EMT6 cells. After administration of PDT, the type of cell death was characterized to be apoptosis, and a change in the mitochondrial membrane potential was also observed within minutes. On the other hand, tumor growth was remarkably retarded in vivo in mice that received DH-I-180-3/PDT, compared with mice in the control group, which were exposed to light irradiation alone. Finally, tumors in some mice nearly healed. The antitumor drug reached a maximum concentration approximately 3 h after administration. However, PDT was most effective when there was substantial accumulation of DH-I-180-3 in the tumor vasculature and in healthy tissue. The histological demonstration provided further evidence of tumor vascular damage. On the basis of these findings, we suggest that PDT with the photosensitizer DH-I-180-3 induces vascular damage with blood vessel shutdown, in addition to direct killing of tumor cells, in mice.  相似文献   

20.
We previously reported that the efficacy of photodynamic therapy (PDT) in cell culture was enhanced by ursodeoxycholic acid (UDCA), a nontoxic bile acid. In this study, we examined the ability of UDCA to promote tumor control by PDT in the mouse, using the radiation-induced fibrosarcoma tumor and the photosensitizing agent tin etiopurpurin (SnET2). These experiments revealed that the addition of UDCA to a PDT protocol promoted inhibition of tumor growth, a phenomenon unrelated to either altered SnET2 biodistribution or the level of vascular shutdown during irradiation. These results indicate that UDCA acts solely by promoting direct tumor cell kill by PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号