首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report on interpolyelectrolyte complexes (IPECs) formed by micelles of ionic amphiphilic diblock copolymers with polyisobutylene (PIB) and poly(sodium methacrylate) (PMANa) blocks interacting with quaternized poly(4-vinylpyridine) (P4VPQ). The interpolyelectrolyte complexation was followed by turbidimetry and small angle neutron scattering (SANS). The data obtained by means of a combination of SANS, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM) provide evidence on the core-shell-corona structure of the complex species with the shell assembled from fragments of electrostatically bound PMANa and quaternized P4VPQ fragments, original PIBx-b-PMAAy micelles apparently playing a lyophilizing part. The complex formation is followed by potentiometric titration as well. This process is initially kinetically controlled. In the second step larger aggregates rearrange in favor of smaller complexes with core-shell-corona structure, which are thermodynamically more stable. An increase in ionic strength of the solution results in dissociation of the complex species as proven by SANS and analytical ultracentrifugation (AUC). This process begins at the certain threshold ionic strength and proceeds via a salt-induced gradual release of chains of the cationic polyectrolyte from the complex species.  相似文献   

2.
Small-angle neutron scattering (SANS) from cationic wormlike micellar solutions composed of hexadecyltrimethylammonium bromide (CTABr) and hexadecylpyridinium bromide (CPyBr) in deuterated water was studied at 40 degrees C as a function of surfactant and salt concentrations. Two scattering functions of semiflexible chains incorporating excluded volume effects, with and without the intermicellar interactions, were used in SANS data model fitting. Two needed changes were made in the well-accepted models. Extensive and systematic SANS data analysis suggests the robustness of these corrected scattering functions when the intermicellar interactions are included. The influence of the headgroups and ionic strength on the contour length and micellar flexibility of these two systems was demonstrated on the basis of the quantitative structural information obtained from the model fitting. Micellar flexibility was found to depend on surfactant concentration, even when intermicellar interactions were taken into account, despite predictions to the contrary.  相似文献   

3.
Short- and long-range liquid structures of [C(n)mIm(+)][TFSA(-)] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2-0.4 A?(-1), indicating the heterogeneity of their ionic liquids. SANS profiles I(H)(Q) and I(D)(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=I(D)(Q) - I(H)(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, S(Q) (peak)(r). The S(Q) (peak)(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5-8 and 8-15 A? for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the C(n)mIm.  相似文献   

4.
The interaction of ionic liquids (ILs) with non-ionic triblock copolymer, Pluronic® P123, in aqueous solutions has been investigated using Small Angle Neutron Scattering (SANS) measurements. The micellar structural parameters are obtained by fitting the SANS scattering data with model composed of core-shell form factor and a hard sphere structure factor of interaction, as a function of cationic head group of ILs. With the addition of ILs, a decrease in the micellar core, aggregation number, and hard sphere radius of P123 micelles was noticed. The results are discussed and explained as a function of cationic head groups of N-octylpyridinium/imidazolium chloride.  相似文献   

5.
Small angle neutron scattering (SANS) intensity distributions from ionic micellar solutions without added salt generally show a prominent interaction peak at finite Q (magnitude of the wave vector transfer) related to a certain inter-micellar correlation distance. Analysis of this type of data requires, aside from the structural model of the micelle itself, a statistical mechanical theory for dealing with the inter-micellar correlations. We present a method for a consistent analysis of SANS data taking into account the surfactant chain packing, the aggregation number polydispersity, and the effective micellar charge. The micelle is modelled as a two-region spheroidal particle and the inter-micellar correlations calculated according to a generalized one-component macroion (GOCM) theory. GOCM uses an effective inter-micellar pair potential which is a finite concentration extension of the well-known Derjaguin-Landau-Verway-Overbeek (DLVO) double layer interaction potential. Two micellar solutions are treated as examples, namely that of sodium dodecyl sulfate (SDS) and sodium 1,2-bis(2-ethylhexyloxycarbonyl)ethanesulfonate (AOT). The effects of polydispersity are appreciable immediately above the critical micellar concentrations (CMC). Both the structural parameters of the micelle and the free energies of micellization and micellar growth can be extracted from SANS data.  相似文献   

6.
Small-angle neutron scattering (SANS), contrast-matching SANS, and nitrogen adsorption have been utilized to investigate the confined ionic liquid (IL) [bmim][PF(6)] phase in ordered mesoporous silica MCM-41 and SBA-15. The results suggest that the pores of SBA-15 are completely filled with IL whereas a small fraction of the pore volume, the pore "core", of MCM-41 is empty. The contrast-matching SANS measurements confirm the enhanced solubility of water in IL. In addition, they provide strong evidence that water does not enter the empty pore core of MCM-41, possibly because of the preferred orientation of the IL molecules in the adsorbed layer.  相似文献   

7.
The surface active and aggregation behavior of ionic liquids of type [C n mim][X] (1-alkyl-3-methylimidazolium (mim) halides), where n = 4, 6, 8 and [X] = Cl, Br and I was investigated by using three techniques: surface tension, 1H nuclear magnetic resonance (NMR) spectroscopy, small-angle neutron scattering (SANS). A series of parameters including critical aggregation concentrations (CAC), surface active parameters and thermodynamic parameters of aggregation were calculated. The 1H NMR chemical shifts and SANS measurements reveal no evidence of aggregates for the short-chain 1-butylmim halides in water and however small oblate ellipsoidal shaped aggregates are formed by ionic liquids with 1-hexyl and 1-octyl chains. Analysis of SANS data analysis at higher concentrations of [C8mim][Cl] showed that the microstructures consist of cubically packed molecules probably through ππ and hydrogen bond interactions.  相似文献   

8.
Formation and structure of micelles from two amphiphilic polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers (PS mol.wt. 1000; PEO mol.wt. 3000 and 5000) were examined by surface tension, viscosity, steady state fluorescence, dynamic light scattering (DLS), small angle neutron scattering (SANS), and cryo-transmission electron microscopy (cryo-TEM). The critical micelle concentration (CMC) of the copolymers in aqueous solution was ca. 0.05%; micelle hydrodynamic diameter was 30–35 nm with a narrow size distribution. SANS studies show that the copolymers form ellipsoidal micelles with semi major axis ~23 nm and semi minor axis ~8 nm. No significant change in the structure was found with temperature and presence of salt. The copolymer micelles interaction with the ionic surfactants sodium dodecyl sulphate (SDS) and dodecyltrimethylammonium bromide (DTAB) was also examined by DLS and SANS.  相似文献   

9.
Aggregation behavior of aqueous solutions of ionic liquids   总被引:8,自引:0,他引:8  
The aggregation behavior in aqueous solutions of three ionic liquids based on the 1-alkyl-3-methylimidazolium cation has been investigated by means of surface tension, conductivity, and small-angle neutron scattering (SANS) measurements. From analysis of the SANS data, models for the shapes and sizes of aggregates have been proposed: the short-chain 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim] [BF4] system can be best modeled by treating it as a dispersion of polydisperse spherical aggregates that form above a critical aggregation concentration, whereas the 1-octyl-3-methylimidazolium iodide, [C8mim] [I], solutions can be modeled as a system of regularly sized near-spherical charged micelles that form above a critical micelle concentration. Solutions of 1-octyl-3-methylimidazolium chloride, [C8mim]-[Cl], display weak long-range ordering of possibly disklike particles culminating in the formation of structures with distinct long-range order at higher concentrations.  相似文献   

10.
Organosols comprising silica nanoparticles, stabilized by adsorbed surfactant layers in low dielectric organic solvents were formulated, and their properties studied. A range of different methods for organosol formation starting from aqueous sols were evaluated and compared, in order to determine the most reliable and reproducible approach. To understand the influence of surfactant type and solvent on stability, samples were prepared with a range of surfactants and in different solvents and solvent blends. Structural properties and interparticle interactions were probed using dynamic light scattering (DLS), zeta potentials were determined, and the surfactant layers were investigated with contrast-variation SANS. SANS data suggest that for systems stabilized by ionic surfactants, the nanoparticles are in equilibrium with a population of reverse micelles, but this is apparently not the case for those stabilized by nonionic surfactants. Low zeta potentials show evidence of a small amount of surface charging in these nonaqueous systems, although it is unlikely to have any significant effect on their overall stability.  相似文献   

11.
We have investigated self-organization of polymers with surfactants through solvent shifting process resulting in formation of stable and uniform nanoparticles. We studied polymeric nanoparticles made of poly(methylmethacrylate) and of polystyrene dispersed in water. The dispersion was prepared by a fast mixing of a solution of the polymers with a solution of several ionic and nonionic surfactants in pure water. We observed the formation of well defined nanoparticles by light scattering, small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (Cryo-TEM) methods. The study shows how nanoparticle properties are changed by the chemical composition of surfactants, molar mass of polymers, concentrations of both components and finally, by variations in method of nanoparticles preparation. Dynamic light scattering (DLS) and static light scattering (SLS) provide the hydrodynamic radii and radii of gyration for selected types of nanoparticles. Cryo-TEM experiments prove that the nanoparticles have good spherical shape. Analysis of SANS data and Cryo-TEM micrographs suggest that the prepared particles are composed of polymer and surfactant that are evenly distributed.  相似文献   

12.
The aggregation behavior of short alkyl chain ionic liquids (ILs), namely 1-butyl, or 1-hexyl or 1-octylpyridinium and 1-octyl-2-, or -3-, or -4-methylpyridinium chlorides, in water has been assessed using surface tension, electrical conductance, (1)H NMR, small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) measurements. Critical aggregation concentrations (CACs), adsorption (at air/water interface) and thermodynamic parameters of aggregation have been reported. The values of CAC and area per adsorbed molecule decrease with the number of carbon atoms in the alkyl chain. The aggregation process is driven by both favorable enthalpy and entropy contributions. An attempt was made to examine the morphological features of the aggregates in water using SANS and SAXS methods. SANS and SAXS curves displayed diffuse structural peaks that could not be model fitted, and therefore, we calculated the mean aggregation numbers from the Q(max) assuming that IL molecules typically order into cubic type clusters.  相似文献   

13.
Aggregation of imidazolium-based ionic liquid, C(12)mim(+)NO(3)(-), in both polar solvent of water and nonpolar solvent of benzene was elucidated by electrical conductivity, small-angle neutron scattering (SANS), and (1)H NMR measurements. The electrical conductivities of C(12)mim(+)NO(3)(-)-water solutions at 298 K as a function of ionic liquid concentration showed a break point at 8.4 mmol dm(-3) as a cmc. However, those of C(12)mim(+)NO(3)(-)-benzene solutions drastically increase in accordance with a cubic function of concentration, but without a break point. The SANS profiles of both aqueous and benzene solutions obviously differ from each other. The profiles of the aqueous solutions indicated the formation of polydisperse spherical micelles. Those of the benzene solutions revealed Ornstein-Zernike behavior. Thus, C(12)mim(+)NO(3)(-) forms clusters in the benzene solutions, but the shape of clusters is indefinite. On the basis of the (1)H NMR chemical shifts of the aqueous solutions, the effect of nitrate on the formation of micelles was discussed on a microscopic scale. Furthermore, the interactions among C(12)mim(+), NO(3)(-), and benzene molecules in the benzene solutions were considered according to the (1)H NMR data.  相似文献   

14.
The formation of vesicles from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) in several room-temperature ionic liquids, namely, 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF(4)), 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf(2)), and N-benzylpyridinium bis(trifluoromethylsulfonyl)imide (BnPyNTf(2)), as well as in a water/BmimBF(4) mixture, was investigated. In pure ionic liquids, observations by staining transmission electron microscopy demonstrated clearly the formation of spherical structures with diameters of 200-400 nm. The morphological characteristics of these vesicles in ionic liquids, in particular, the membrane thicknesses, were first investigated by small-angle neutron scattering measurements. The mean bilayer thickness was found to be ~63 ± 1 ? in a deuterated ionic liquid (BnPyNTf(2)-d). This value was similar to that observed in water. The effect of ILs on the modification of the phase physical properties of multilamellar vesicles (MLVs) was then investigated by differential scanning calorimetry. In pure IL as in water, DPPC exhibited an endothermic pretransition followed by the main transition. These transition temperatures and the associated enthalpies in ILs were higher than those in water because of a reduction of the electrostatic repulsion between zwitterionic head groups. To better understand the effect of ionic liquid on the formation of multilamellar vesicles, mixtures of BmimBF(4) and water, which are miscible in all proportions, were analyzed (BmimBF(4)/water ratio from 0% to 100%). SANS and DSC experiments demonstrated that the bilayer structure and stability were strongly modified by the IL content. Moreover, matching SANS experiments showed that BmimBF(4) molecules prefer to be located inside the DPPC membrane rather than in water.  相似文献   

15.
This paper reviews small‐angle neutron scattering (SANS) and some results from direct nonradiative energy transfer (DET), for the observation of the diffusion coefficients of polystyrene chains at latex interfaces. To compare SANS with DET, doubly labeled polystyrene with deuterium and fluorescence groups were synthesized, showing that while SANS and DET produce comparable data in terms of diffusion coefficients, both results differ in detail, each having their own advantages. Chain confinement, ionic end groups, and short branch effects on interdiffusion were studied. Large polymer chains confined in small particles have non‐Gaussian shapes that store rubber elastic energy. Rapid, non‐diffusion relaxation is inhibited because the density would be required to become less than normal. Hence confinement effects on the diffusion rate are not significant. Using the DET method, ionic end‐groups were found to increase the early‐time apparent interdiffusion coefficients during film formation. The early‐time apparent diffusion coefficients of polystyrene with varying end‐groups were found to increase as follows: The higher apparent diffusion coefficients of the chains with ionic groups are presumably due to a surface segregation of the end‐groups caused by the polar, aqueous environment during latex synthesis. The interdiffusion behavior of sulfite‐ended polystyrene (Mn ? 300 000 g/mol) with H‐ends, one sulfite end, and two sulfite ends were compared via SANS and DET. The diffusion coefficients of polystyrene with one or two sulfite end groups were five times and ten times lower than that of polystyrene, respectively. The ionic end group effects on the reduced diffusion coefficients are interpreted as the competition between enhancement by the surface segregation of end groups and reduction by end group aggregation. Noting that sulfate end groups diffused faster, while sulfite end groups diffused slower, the effect is complex, and not yet fully resolved. Diffusion coefficients of polystyrene with branches were studied by DET. Short branches work to decrease the Tg and hence increase the diffusion coefficients. However, after the experimental temperature, T, is converted to a normalized temperature, T‐Tg, the diffusion coefficients are found to be almost independent upon the number of branches and the length of branches. The branch length ranged from one‐carbon to 40 carbons. Side chains of entanglement molecular weight or longer may be required to significantly reduce the diffusion coefficient. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
We present small angle neutron scattering (SANS) measurements of deuterium oxide (D(2)O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt-free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.  相似文献   

17.
The phase behaviour of binary mixtures of ionic surfactants (1‐alkyl‐3‐imidazolium chloride, CnmimCl with n=14, 16 and 18) and imidazolium‐based ionic liquids (1‐alkyl‐3‐methylimidazolium tetrachloroferrate, CnmimFeCl4, with n=2 and 4) over a broad temperature range and the complete range of compositions is described. By using many complementary methods including differential scanning calorimetry (DSC), polarised microscopy, small‐angle neutron and X‐ray scattering (SANS/SAXS), and surface tension, the ability of this model system to support self‐assembly is described quantitatively and this behaviour is compared with common water systems. The existence of micelles swollen by the solvent can be deduced from SANS experiments and represent a possible model for aggregates, which has barely been considered for ionic‐liquid systems until now, and can be ascribed to the rather low solvophobicity of the surfactants. Our investigation shows that, in general, CnmimCl is a rather weak amphiphile in these ionic liquids. The amphiphilic strength increases systematically with the length of the alkyl chain, as seen from the phase behaviour, the critical micelle concentration, and also the level of definition of the aggregates formed.  相似文献   

18.
19.
Small-angle neutron scattering (SANS) studies of polymers are no longer a rarity in polymer science. It is now widely appreciated that SANS can provide unique data which provide greater insight into polymer structural properties than otherwise obtainable. Nonetheless, the costs of the apparatus and special efforts that have to be taken to prepare necessary deuterated polymers mean that such experiments have to be designed with care to ensure that unambiguous data are obtained. There are now in existence several reviews on various aspects [1–4] of SANS studies of polymers; attention in this review is focused on multiphase polymer systems. However, newer aspects of SANS studies on homopolymers will also be discussed, and we begin by a necessarily brief survey of the relevant theoretical expressions.  相似文献   

20.
The results of small-angle neutron scattering(SANS) carried out on aqueous and CS2 solutions of tetramethylurea(TMU) are compared. It is shown that the SANS data indicate the formation of TMU-TMU dimers in both solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号