首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NaP zeolites samples with different morphologies were successfully synthesized and their thermal behaviors were fully characterized by in situ HT-XRD, IR spectrum, and TG-DSC techniques. It was found that the cubic zeolite NaP phase underwent the same phase transitions, despite their different morphologies. During the whole heating process, they first underwent a minor phase transition into the tetragonal phase at 200 °C. Then they were gradually converted into the phillipsite phase between 400 and 700 °C. Finally, a very stable NaAlSiO4 nepheline phase formed when the calcination temperature reached 800 °C, which would be kept even after the sample was cooled to room temperature. Although samples with different morphologies had similar phase transitions, they did have different thermal stability as proved by the TG-DSC study.  相似文献   

2.
Polarizing microscope textures of the twist grain boundary A* (TGBA*) phase are reviewed for two different compounds in different geometries with different surface treatments giving monostable planar and homeotropic boundary conditions. The textures are discussed in the light of the helical structure of the TGBA* phase. Depending on the compound, the underlying phase is either SmA* or SmC*, whereas the adjacent phase at higher temperature is cholesteric (N*). Sample preparations in wedge-shaped cells subjected to a slight temperature gradient exhibit TGBA* textures much more typical for the cholesteric than for the ordinary SmA* phase. For instance, Grandjean steps and fingerprint textures are observed for planar and homeotropic boundary conditions, respectively. Preparation of smectic droplets clearly reveals the helical axis of the TGBA* phase to be perpendicular to the helical axis of the helielectric SmC* phase. For thin samples, a suppression of the TGBA* helix leading to a surface-induced structure corresponding to a conventional bulk SmA* phase is observed. Under certain conditions, a cholesteric phase in the vicinity of a twist inversion point may exhibit very similar textures to the TGBA* phase near the transition to the SmA* phase. On exemplified textures similarities are discussed and differences pointed out.  相似文献   

3.
The radiation-induced oxidative degradation of polyethylenes (PEs) with different degrees of crystallinity was characterized after electron-beam irradiation and during storage at room temperature.UHMWPE, HDPE, LDPE, LLDPE and an ethylene-octene copolymer (Engage) were e-beam irradiated to 30 or 60 kGy in vacuum or in air and stored at room temperature in air. EPR spectroscopy was used to investigate macro-radicals produced during irradiation and their post-irradiation changes. FTIR spectroscopy was used to monitor changes in the polymer structure, induced by irradiation, and to follow post-irradiation oxidation.We found that the crystallinity and the size of the crystalline lamellae, in particular, play a major role on the post-irradiation effects. The low-crystallinity polyethylenes showed no oxidation or oxidation only to a small extent, even when irradiated and stored in air. On the contrary, development of post-irradiation oxidation was observed in HDPE and UHMWPE. We attribute these results to a different reactivity of the macro-alkyl radicals formed upon irradiation in the amorphous or in the crystalline phase. While the radicals formed in the amorphous phase decay in short time, the migration time of the radicals trapped in the crystalline phase to the amorphous one is a key factor, governing the oxidation process.  相似文献   

4.
L. Szepesy  G. Rippel 《Chromatographia》1992,34(5-8):391-397
Summary Retention and selectivity in hydrophobic interaction chromatography (HIC) depend both on the type of stationary phase and on the mobile phase. In the last few years various high performance packing materials and columns have been introduced for HIC resulting in a range of different retentions and selectivity. We have investigated the effect of the stationary phase on the retention of various proteins. The retention of some solutes of different hydrophobicities were measured on three commercial HIC columns (TSK-Phenyl, Synchropack-Propyl, CAA-HIC) under isocratic conditions using water-methanol mixtures as eluent. The log kw values determined according to the literature were devalues determined according to the literature were dependent on the type and structure of the stationary phase and indicated a much less hydrophobic character for these columns than that obtained for reversed phase columns. Gradient separations were then carried out on a standard protein mixture using ammonium sulfate and sodium citrate to change the gradient time. In order to compare the effect of the stationary phase and the two salts investigated apparent capacity factors (kg) were determined and plotted against the gradient time obtained for the three columns in the two eluent system. It was shown that the type of stationary phase had a significant effect on the retention of proteins. In addition, the effect of the mobile phase composition, i.e. salt type, was considerably different on the various stationary phases. In order to exploit the potential of HIC to modulate selectivity for the separation of proteins, the combined effect of the stationary phase and the type of salt should be taken into account.Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

5.
In this work the phase behavior of [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) blends with different poly(phenylene vinylene) (PPV) samples is investigated by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC) and rapid heat-cool calorimetry (RHC). The PPV conjugated polymers include poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV), High T(g)-PPV which is a copolymer, and poly((2-methoxy-5-phenethoxy)-1,4-phenylene vinylene) (MPE-PPV). Comparisons of these PPV:PCBM blends with regioregular poly(3-hexyl thiophene) (P3HT):PCBM blends are made to see the different component miscibilities among different blends. The occurrence of liquid-liquid phase separation in the molten state of MDMO-PPV:PCBM and High T(g)-PPV:PCBM blends is indicated by the coexistence of double glass transitions for blends with a PCBM weight fraction of around 80 wt%. This is in contrast to the P3HT:PCBM blends where no phase separation is observed. Due to its high cooling rate (about 2000 K min(-1)), RHC proves to be a useful tool to investigate the phase separation in PPV:PCBM blends through the glass transition of these crystallizable blends. P3HT is found to have much higher thermal stability than the PPV samples.  相似文献   

6.
A new stationary phase containing primary amine and tertiary amine groups was synthesized and its structure was confirmed by infrared spectra, elemental analysis, and zeta potential. This new material was packed into a stainless steel column and the effect of acetonitrile (ACN) content in mobile phase on retention was evaluated using probes of nucleosides, sulfanilamides, and quinolone compounds. This showed hydrophilic interaction, ion interaction, or a mixed-mode retention mechanism for different kinds of solutes, respectively. The effects of the pH and ion strength of the mobile phase were investigated to further understand the retention mechanism of the new stationary phase. The interaction forces caused by the new phase included adsorption, electrostatic function, and ion exchange. The new material could be used as a stationary phase in different high-performance liquid chromatography modes.  相似文献   

7.
We describe the macroscopic behaviour of polymers at the interface of two different phases in terms of the two average lengths which the chain units obtain at the two phases. The possibility for the units of the same chain to have different average lengths changes the spatial monomeric distribution and all the other macroscopic properties of the polymers compared to those of similar systems in a single phase.  相似文献   

8.
The interaction parameter of a given repeat unit in liquid adsorption chromatography (LAC) can be determined from the slope in a plot of the elution volumes versus the difference in elution volumes of subsequent monomers. In such a plot, the intercept represents the void volume, and from the slope the adsorption interaction parameter can be calculated. This parameter is independent of column dimensions and pore diameter and can thus be used as a measure of the interaction of a given repeat unit with the surface of a stationary phase in a given mobile phase composition. The interaction parameter can also be obtained from the slope in a plot of the logarithmic retention factors k versus the number of repeat units n or from the slope in a plot of the logarithmic difference in elution volumes of subsequent monomers versus n. The values obtained by the three different approaches are in good agreement. In a given mobile phase, the interaction parameter of a given repeat unit was found to be almost the same for various alkyl bonded columns from different producers. The retention of a given oligomer depends as well on the interaction parameter as on the pore dimensions (and thus the internal pore surface) of the stationary phase. The pore surface can be determined from the intercept in a plot of the logarithmic difference in elution volumes of (subsequent) nonfunctional monomers as a function of n. As the interaction parameter of a given repeat unit in a given mobile phase is the same for stationary phases with the same chemical nature, retention can be adjusted by selection of the pore surface. On a given stationary phase, there is a linear dependence between interaction parameter and mobile phase composition.  相似文献   

9.
The prediction capability of the solvation parameter model in reverse‐phase liquid chromatography at different methanol‐water mobile phase compositions and temperatures was investigated. By using a carefully selected set of solutes, the training set, linear relationships were established through regression equations between the logarithm of the solute retention factor, logk, and different solute parameters. The coefficients obtained in the regressions were used to create a general retention model able to predict retention in an octadecylsilica stationary phase at any temperature and methanol‐water composition. The validity of the model was evaluated by using a different set (the test set) of 30 solutes of very diverse chemical nature. Predictions of logk values were obtained at two different combinations of temperature and mobile phase composition by using two different procedures: (i) by calculating the coefficients through a mathematical linear relationship in which the mobile phase composition and temperature are involved; (ii) by using a general equation, obtained by considering the previous results, in which only the experimental values of temperature and mobile phase composition are required. Predicted logk values were critically compared with the experimental values. Excellent results were obtained considering the diversity of the test set.  相似文献   

10.
Polyethylene glycol 300 (PEG 300) and polypropylene glycol 425 (PPG 425) were analyzed using size exclusion chromatography (SEC) in different solvents, normal and reversed phase liquid chromatography (NPLC and RPLC), supercritical fluid chromatography (SFC), and matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). In liquid chromatography, different detectors were used: density, refractive index (RI) and evaporative light scattering detector (ELSD).  相似文献   

11.
The enantioselective separation of omeprazole on different chiral stationary phases was investigated. The two enantiomers could be resolved on three different phases with immobilized protein, Chiral-AGP, Ultron ES-OVM and BSA-DSC, employing aqueous mobile phases with 2-propanol as organic modifier. On Chiralpak AD, an amylose-based chiral stationary phase, the enantiomers of omeprazole and three analogues could be separated using a non-polar hexane-ethanol mobile phase. For omeprazole the retention order was reversed when 2-propanol was replaced with ethanol or methanol as the modifier of hexane in the mobile phase.  相似文献   

12.
采用相溶解度法,通过测定丹皮酚在不同温度不同浓度的β-环糊精(β-CD)、羟丙基-β-环糊精(HP-β-CD)、羟乙基-β-环糊精(HE-β-CD)、取代度为4的磺丁基醚-β-环糊精(SBE4-β-CD)以及取代度为7的磺丁基醚-β-环糊精(SBE7-β-CD)中的溶解度,绘制相溶解度曲线,丹皮酚的溶解度均随5种环糊精浓度的增加而成线性增加,相溶解度曲线为AL型,说明丹皮酚与环糊精以1∶1包合,实验结果表明,5种环糊精对丹皮酚均有增溶作用且SBE7-β-CD的增溶效果最佳.  相似文献   

13.
A novel, simple, and very efficient method to prepare hydrophobically modified gold particles is presented. Gold nanoparticles of different sizes and polydispersities were prepared. The diameter of the gold particles ranges from 5 to 37 nm. All systems were prepared in aqueous solution stabilized by citrate and afterwards transferred into an organic phase by using amphiphilic alkylamine ligands with different alkyl chain lengths. The chain length was varied between 8 and 18 alkyl groups. Depending on the particle size and the alkylamine, different transfer efficiencies were obtained. In some cases, the phase transfer has a yield of about 100%. After drying, the particles can be redispersed in different organic solvents. Characterization of the particles before and after transfer was performed by using UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS) techniques. The effect of organic solvents with various refractive indices on the plasmon band position was investigated.  相似文献   

14.
In this study, the strong morphology changes of polyvinylidene fluoride (PVDF) membrane were demonstrated by changing phase separation process from a diffusion induced phase separation (DIPS) to its combination with a thermally induced phase separation (TIPS) which can be attained via changing the diluent – dibutyl phthalate (DBP) content in solvent – N,N-dimethylacetamide (DMAc). The solvent became poor when it mixed with DBP, so TIPS could occur in the quenching process which resulted in a rapid crystallization process. In this process, the porous skin and interlocked small crystallite particle (or bi-continuous) morphologies were formed, while the porous skin and leaf-like network morphology came from the rapidly crystallizing in TIPS, the large spherulite and dense skin could be attributed to the relaxed crystallization in DIPS, the finger-like macro-void and dense skin resulted from the liquid–liquid phase separation in DIPS. Simply speaking, the different membrane morphologies can be obtained by changing the DBP content in DMAc and the coagulation bath temperature.  相似文献   

15.
A comparative study of the phase diagrams and morphology of blends of poly(2‐ethylhexylacrylate) and low molecular weight liquid crystals (LCs) prepared under different conditions is presented. Two LCs are used; one is the 4‐cyano‐4′‐n‐pentyl‐biphenyl and the other is the eutectic mixture of cyanoparaphenylenes known as E7. Two series of blends are prepared under different conditions. The first series is obtained by the polymerization induced phase separation (PIPS) process under UV‐curing starting from a monomeric mixture, while the second series is prepared by a combination of the solvent induced phase separation and the thermally induced phase separation process starting from a mixture containing a commercial polymer with known molecular weight. Using gel permeation chromatography, it is found that the polymer molecular weight of the UV‐cured systems decreases with the concentration of LC in the precursor mixture. The experimentally obtained phase diagrams of these two series of systems show a miscibility shift at the composition where the molar mass of the polymer in the PIPS/UV blend exceeds that of the commercial polymer. Data are rationalized in terms of the Flory‐Huggins theory of isotropic mixing and the Maier‐Saupe theory of nematic order. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 18–27, 2007  相似文献   

16.
Zhang G  Li Y  Fang Y  Han N  Xu B 《Electrophoresis》2003,24(4):693-699
Octadecyl silyl silica (ODS) phase coated with immobilized polysiloxanes (OV1701, SE-54, SE-30) were synthesized, their characteristics as capillary electrochromatography (CEC) column packing materials were studied. It was found that, although the polysiloxane coatings were different in polarity, the resulting packing materials showed the highest efficiencies when the respective coating ratios (polysiloxane:ODS, w/w) were all 20-30%. As expected, packing materials coated with different polysiloxanes resulted in different selectivity on solute pairs. Separations on these stationary phases were studied with different factors such as pH values and acetonitrile contents of the mobile phases. It was found that all these kind of stationary phases could resist basic mobile phase with a pH value as high as 11.6. Tests were made to analyze polar, basic drugs with CEC using the stationary phases.  相似文献   

17.
Changes in the crystalline structure during heating of melt-drawn ultrahigh molecular weight polyethylenes (UHMW-PEs) having different molecular characteristics were analyzed by in situ wide-angle X-ray diffraction measurements. A phase transition from the orthorhombic into the hexagonal phase was observed for all samples, but the perfection was enhanced and the possible temperature window for the hexagonal phase was greater for the sample containing only a higher molecular weight component. In contrast, an increase in retractive stress during heating was confirmed for the sample containing a lower molecular weight component, reflecting melting of the folded-chain crystal (FCC). Differential scanning calorimetry and transmission electron microscopy revealed the dependency of the molecular characteristics of the sample on the resultant morphologies. These results demonstrate that the existence of FCC determines both the quality and the width of the temperature window for the hexagonal phase during heating of melt-drawn UHMW-PEs.  相似文献   

18.
Temperature was investigated as active parameter in the liquid chromatography (LC) analysis of octylphenol ethoxylates. Significant differences in selectivity were observed when the oligomers were analyzed by reversed phase LC (RPLC) on silica-, zirconia- and polystyrene/divinylbenzene based stationary phases at low (ambient), medium and elevated temperature with acetonitrile/water as mobile phase. As ascertained by LC-mass spectroscopy (MS), in most cases the elution order of the oligomers was completely reversed comparing ambient and high temperature separations. On a graphitized carbon type column, the selectivity remained unchanged, regardless the analysis temperature. Also in normal phase LC, the elution order remained unaffected by temperature variations both for acetonitrile/water and methanol/water mixtures as mobile phase. Surprisingly, when reversed phase LC on a octadecylsilicagel column at different temperatures was repeated with methanol instead of acetonitrile as mobile phase ingredient, the reversal of elution order did not take place. Results are evaluated in terms of thermodynamic parameters.  相似文献   

19.
Determination of the surface roughness by AFM is crucial to the study of particle fouling in nanofiltration. It is, however, very difficult to compare the different roughness values reported in the literature because of a lack in uniformity in the methods applied to determine surface roughness. AFM is used in both noncontact mode and tapping mode; moreover, the size of the scan area is highly variable. This study compares, for six different nanofiltration membranes (UTC-20, N30F, Desal 51HL, Desal 5DL, NTR7450, NF-PES-10), noncontact mode AFM with tapping mode AFM for several sizes of the scan area. Although the absolute roughness values are different for noncontact AFM and tapping mode AFM, no difference is found between the two modes of AFM in ranking the nanofiltration membranes with respect to their surface roughness. NTR 7450 and NF-PES-10 are the smoothest membranes, while the roughest surface can be found with Desal 51HL and Desal 5DL. UTC-20 and N30F are characterized by an intermediate roughness value. An increase in roughness with increasing scan area is observed for both AFM modes. Larger differences between the roughnesses of the membranes are obtained with tapping mode AFM because of the tapping of the tip on the surface. Phase imaging is an extension of tapping mode AFM, measuring the phase shift between the cantilever oscillation and the oscillation of the piezo driver. This phase shift reflects the interaction between the cantilever and the membrane surface. A comparison with contact angle measurements proves that a small phase shift corresponds to a large contact angle, representing a hydrophobic membrane surface.  相似文献   

20.
Preparation of PLGA microspheres with different porous morphologies   总被引:1,自引:0,他引:1  
甘志华  王峰 《高分子科学》2015,33(1):128-136
Poly(D,L-lactide-co-glycolide)(PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell(denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin(BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号