首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sensitive, reactive, and hydrophilic fluorogenic reagents for thiols with the benzofurazan skeleton, 4-(N-acetylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (AcABD-F) and 4-(N-trichloroacetylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (TCAcABD-F) have been developed. These reagents reacted with thiols within 10 min at 60 degrees C. AcABD-F and TCAcABD-F themselves do not fluoresce but are strongly fluorescent after the reaction with thiol compounds. The generated derivatives were highly water-soluble, since they dissociated a proton and ionized in the neutral pH region. The derivatives with four biologically important thiol compounds were separated on a reversed-phase HPLC column and detected fluorometrically at 504 nm with excitation at 388 nm. The detection limit attained for homocysteine with AcABD-F was 25 fmol on column (11 nM) (signal-to-noise ratio = 3), and that for glutathione with TCAcABD-F was 45 fmol on column (20 nM).  相似文献   

2.
The review is devoted to alkylation (arylation) as a widely employed derivatization procedure for the protection of OH (carboxylic acids, phosphoric acids, sulfonic acids, alcohols, polyols, phenols, enols), SH (thiols) and NH (amines, amides) groups in order to increase volatility, to improve the chromatographic properties and, if possible, mass spectral properties of derivatives. Chemical aspects of derivatization and various alkylation (arylation) reagents and reaction procedures are described. Specific mass spectral (electron ionization, chemical ionization) features of derivatives helpful in identification, structure elucidation, profiling and quantitative determination of the above-mentioned polar compounds by coupled gas chromatography or high-performance liquid chromatography are discussed. Some common analytical applications of the procedures in organic chemistry, clinical chemistry, environmental chemistry etc. are briefly summarized.  相似文献   

3.
A highly sensitive and simple method using HPLC-fluorescence detection with 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide (DAABD-Cl) as a fluorogenic reagent demonstrated the existence of the low-molecular-weight thiols in the extract of Caenorhabditis elegans (C. elegans). The method includes derivatization of the thiols with DAABD-Cl at 40 degrees C for 10 min in borate buffer (pH 9.0) containing TCEP, CHAPS and EDTA, separation of the derivatives on an ODS column and fluorometric determination of the derivatives at 510 +/- 15 nm with excitation at 400 +/- 15 nm. The identification of the thiols was made by HPLC-electrospray ionization mass spectrometry (LC-MS) following isolation of the derivatives using HPLC-fluorescence detection. Low-molecular-weight thiols were found to exist in the extract of C. elegans, such as cysteine, cysteinylglycine, gamma-glutamylcysteine, reduced glutathione and two other unidentified thiol compounds, confirming the existence of the 'glutathione cycle' in C. elegans similar to the mammalian body.  相似文献   

4.
Three fluorescent derivatization reagents for compounds having hydroxyl and/or amino groups are described. 4-(2-Phthalimidyl)benzoyl chloride, 3-(2-phthalimidyl)benzoyl chloride and 3-(2-phthalimidyl)-4-methoxybenzoyl chloride, prepared from the corresponding phthalimidylbenzoic acid, were stable at room temperature and condensed quantitatively with alcohols, amines and amino acids in the presence of alkali under mild conditions to give strongly fluorescent derivatives. The derivatives were separated by thin-layer and high-performance liquid chromatography.  相似文献   

5.
Four new 2,1,3-benzoxadiazole amine reagents having different functional groups at the 4- and 7-positions, [4-nitro-7-N-piperazino-2,1,3-benzoxadiazole (NBD-PZ), 4-(N,N-dimethylaminosulphonyl)-7-N-piperazino-2,1,3-benzoxad iazole (DBD-PZ), 4-(N,N-dimethylaminosulphonyl)-7-N-cadaverino-2,1,3-benzoxad iazole (DBD-CD) and ammonium 7-N-piperazino-2,1,3-benzoxadiazole-4-sulphonate (SBD-PZ)] were synthesized as fluorogenic tagging reagents for carboxylic acids in high-performance liquid chromatography. The reagents, except SBD-PZ, reacted with carboxylic acid at room temperature in the presence of activation agents to produce fluorescent adducts. The maximum wavelengths of arachidic acid tagged with DBD-PZ, DBD-CD and NBD-PZ were 569 nm (excitation, 440 nm), 561 nm (excitation, 437 nm) and 541 nm (excitation, 470 nm), respectively. Among various activation agents tested [diethyl phosphorocyanidate (DEPC), diphenyl phosphoroyl azide (DPPA), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)-pyridine, 2.2'-dipyridyl disulphide-triphenylphosphine (Mukaiyama A) and 2-chloro-1-methylpyridinium iodide-triethylamine (Mukaiyama B)], DEPC and Mukaiyama A were more effective than the others. When the piperazino reagents (DBD-PZ and NBD-PZ) were used as the tagging reagents, the derivatization reaction in the presence of Mukaiyama A was faster than that in the presence of DEPC. Although the reaction in the presence of Mukaiyama A was completed after 30 min, an unknown peak derived from the activation agent appeared on the chromatograms. The fluorescence peak intensities were compared in the presence of DEPC. The order of the fluorescence peak areas obtained after reaction for 6 h in the presence of DEPC was DBD-PZ greater than DBD-CD greater than NBD-PZ. Thirteen saturated free fatty acids (FFAs) derivatized with DBD-PZ (or DBD-CD) and DEPC (or Mukaiyama A) in acetonitrile were separated completely by linear gradient elution on a reversed-phase ODS column. Eight drugs (ibuprofen, indomethacin, dinoprost, prostaglandin E1, dehydrocholic acid, ursodesoxycholic acid, hydrocartisone succinate and prednisolone succinate) were also tagged with DBD-PZ in the presence of DEPC and separated by isocratic elution. The detection limits (signal-to-noise ratio = 3) of FFAs tagged with DBD-PZ were in the range 3.2-4.7 fmol, whereas those of drugs were in the range 3.9-14 fmol.  相似文献   

6.
Thiol compounds such as cysteine (Cys), reduced (GSH) and oxidized (GSSG) gluathione, and phytochelatins (PCs) play an important role in heavy metal detoxification in plants. These thiols are biological active compounds whose function is elimination of oxidative stress in plant cells. The aim of our work was to optimise sensitive and rapid method of high-performance liquid chromatography coupled with electrochemical detector (HPLC-ED) for determination of the abovementioned thiol compounds in maize (Zea mays L.) kernels. New approach for evaluation of HPLC-ED parameters is described. The most suitable isocratic mobile phase for the separation and detection of Cys, GSH, GSSG and PC2 consisted of methanol (MeOH) and trifluoroacetic acid (TFA). In addition, the influence of concentrations of TFA and ratio of MeOH:TFA on chromatographic separation and detection of the thiol compounds were studied. The mobile phase consisting from methanol and 0.05% (v/v) TFA in ratio 97:3 (%; v/v) was found the most suitable for the thiol compounds determination. Optimal flow rate of the mobile phase was 0.18 ml min(-1) and the column and detector temperature 35 degrees C. Hydrodynamic voltammograms of all studied compounds was obtained due to the selection of the most effective working electrodes potentials. Two most effective detection potentials were selected: 780 mV for the GSSG and PC2 and 680 mV for determination of Cys and GSH. The optimised HPLC-ED method was capable to determine femtomole levels of studied compounds. The detection limits (3 S/N) of the studied thiol compounds were for cysteine 112.8 fmol, GSH 63.5 fmol, GSSG 112.2 fmol and PC2 2.53 pmol per injection (5 microl). The optimised HPLC-ED method was applied to study of the influence of different cadmium concentrations (0, 10 and 100 microM Cd) on content of Cys, GSH, GSSG and PC2 in maize kernels. According to the increasing time of Cd treatment, content of GSH, GSSG and PC2 in maize kernels increased but content of Cys decreased. Decreasing Cys concentration probably relates with the increasing GSH and phytochelatins synthesis.  相似文献   

7.
The peroxyoxalate chemiluminescence detection of biological thiols combined with high-performance liquid chromatography (HPLC) is described. SH groups of the thiol compounds including glutathione (GSH), cysteine, N-acetylcysteine, cysteamine, and D-penicillamine were labelled with N-[4-(6-dimethylamino-2-benzofuranyl)phenyl]maleimide (DBPM), a specific fluorogenic reagent for SH group. The labelling reaction was carried out at 60 degrees C for 30 min and at pH 8.5 and a sample of the resulting reaction mixture was subjected to HPLC. Five kinds of labelled thiols were separated within 12 min on ODS-80 column (150 x 4.6 mm ID; 5 microns) and detected in the ranges from 500 fmol to 2 pmol/100 microL (cysteamine and N-acetylcysteine), to 3 pmol/100 microL (cysteine) and to 5 pmol/100 microL (GSH and D-penicillamine). The lower detection limits were from 7 fmol (cysteamine) to 113 fmol (GSH) per 100 microL (S/N = 2). The method was applied to the determination of thiols in a rat liver. The amounts of glutathione and cysteine were 1.23 +/- 0.15 mumol/g (n = 5) and 0.15 +/- 0.04 mumol/g (n = 5), respectively.  相似文献   

8.
A method for the determination of total N-acetylcysteine and thioglycolic acid in human urine is described. Because these compounds are mainly excreted as disulfides, they are first reduced to the free thiols by treatment with tris(2-carboxyethyl)phosphine hydrochloride and then derivatized with 2-chloro-1-methylquinolinium tetrafluoroborate. Separation and quantitation of the 2-S-quinolinium derivatives of the thiols were achieved by reversed-phase ion-pair liquid chromatography with UV-detection at 355 nm. Because the method enables simultaneous determination of other endogenous urinary thiols, e.g. cysteine and cysteinylglycine, amounts of these compounds in urine were also studied. Detector responses were linear over the range covering most practical situations, with correlation coefficients for all four analytes better than 0.999. Recovery and imprecision (as RSD) were within 99.77–102.17 and 0.01–7.79%, respectively. The lower limit of detection was 0.25 μmol L−1 urine for thioglycolic acid and N-acetylcysteine, and 0.12 μmol L−1 urine for cysteine and cysteinylglycine. The method was used for analysis of urine samples from 29 healthy individuals to establish reference values for the thiols, normalized to creatinine. 3-Mercaptolactic acid, 2-mercaptopropionic acid, and mercaptoethanol were not present in the urine analyzed.  相似文献   

9.
A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the identity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and glutathione disulfide (GSSG). Cysteine, GSH, CSSC and GSSG are present at low concentrations in rainbow trout (Oncorhynchus mykiss) liver cells. Initially, hepatic cells were sampled from a suspension culture and disrupted upon addition of 10% perchloric acid. The reduced thiols present in the cell extracts were acetylated to prevent dimerization and then the C and GSH species were derivatized with dansyl chloride for fluorescence detection. An LC system using a weak anion exchange column (AE) with fluorescence detection (FLD) was used for sensitive routine analysis; however, it produced peaks of unknown origin in addition to the expected analytes. Analytes were then separated on a C18 RP-LC system using a water/acetonitrile gradient with 0.2% formic acid, and detected using LC/ESI-MS at 3.5 KV which produced an intense ion with a minimum limit of detection of less than 0.5 pmole injected (>10:1 signal-to-noise (S/N). Subsequently, fractions of effluent from the AE-LC/FLD system were analyzed by LC/ESI-MS to confirm the presence of the target analytes in routine cell extracts. Monodansylated GSSG was identified as a product that could possibly affect the quantification of GSH and GSSG.  相似文献   

10.
For the first time a liquid chromatography method with high resolution mass spectrometric detection has been developed for the simultaneous determination all key metabolites of the sulfur pathway in yeast, including all thiolic (cysteine (Cys), homocysteine (HCys), glutathione (GSH), cysteinyl-glycine (Cys-Gly), γ-glutamyl-cysteine (Glu-Cys)) and non-thiolic compounds (methionine (Met), s-adenosyl-methionine (AdoMet), s-adenosyl-homocysteine (AdoHcy), and cystathionine (Cysta)). The developed assay also permits the speciation and selective determination of reduced, oxidized and protein bound fractions of all of the five thiols. Iodoacetic acid (IAA) was chosen as the derivatizing reagent. Thiols were extracted from sub-mg quantities of yeast using hot 75% ethanol. The detection limits were in the range of 1–12 nmol L−1 for standard solution (high femotomole, absolute), except AdoMet (116 nmol L−1), which was unstable. In freshly harvested yeast, most of the thiols were in the reduced forms and low levels of protein-bound GSH and Glu-Cys were found. In a selenium enriched yeast, the thiols were mainly in the oxidized forms, and a significant amount of protein-bound Cys, HCys, GSH, Cys-Gly and Glu-Cys were found. The method was also applied to the metabolic study of the adaptive response of Saccharomyces cerevisiae to hydrogen peroxide, cadmium, and arsenite, and the change in concentration of thiols in the sulfur pathway was monitored over a period of 4 h.  相似文献   

11.
A novel on-line HPLC-DTNB method was developed for the selective determination of biologically important thiols (biothiols) such as l-cysteine (Cys), glutathione (GSH), homocysteine (HCys), N-acetylcysteine (NAC), and 1,4-dithioerythritol (DTE) in pharmaceuticals and tissue homogenates. The biothiols were separated on C18 column using gradient elution, reacted with the postcolumn reagent, DTNB in 0.5% M-β-CD (w/v) solution at pH 8, to form yellow-colored 5-thio-2-nitrobenzoic acid (TNB), and monitored with a PDA detector (λ = 410 nm). With the optimized conditions for chromatography and the post-column derivatization, 40 nM of NAC, 40 nM of Cys, and 50 nM of GSH can be determined. The relative standard deviations of the recommended method were in the range of 3.2–5.4% for 50 μM biothiols. The negative peaks of biothiol constituents were monitored by measuring the increase in absorbance due to TNB chromophore. The detection limits of biothiols at 410 nm (in the range of 0.04–0.58 μM) after post-column derivatization with DTNB + M-β-CD were much lower than those at 205 nm UV-detection without derivatization, and were distinctly lower than those with post-column DTNB alone. The method is rapid, inexpensive, versatile, nonlaborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of biothiol constituents of biological fluids and pharmaceuticals.  相似文献   

12.
In the present study, we report a new method for the determination of two primary thiols, cysteine (CYS) and glutathione (GSH), by hydrophilic interaction LC. The polar analytes are separated isocratically using a mobile phase consisting of 65% acetonitrile/35% ammonium acetate (15 mmol/L, pH 2.0) and are detected at 285 nm following on‐line postcolumn derivatization by the thiol‐selective reagent methyl propiolate. The main figures of merit included linearity in the range of 5–200 μmol/L and an LOD 0.6 μmol/L for both compounds. The absence of matrix effect allowed the determination of CYS and GSH in various yeast samples. GSH was present in most of the samples at levels ranging between 0.9 and 3.1 mg/g, whereas CYS was determined in only one sample at a significantly lower concentration. In terms of accuracy, the percent recoveries ranged between 91.2 and 105.6% for GSH, and 91.6 and 106.9% for CYS.  相似文献   

13.
T Toyo'oka  T Suzuki  Y Saito  S Uzu  K Imai 《The Analyst》1989,114(4):413-419
4-(N,N-Dimethylaminosulphonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) was synthesised for use as a more reactive, thiol-specific fluorogenic reagent than 4-(aminosulphonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F). The former had negligible fluorescence whereas its thiol derivatives fluoresced intensely at about 510 nm (excitation occurred at about 380 nm). The DBD-F reacted quantitatively with thiols after 10 min at 50 degrees C and pH 8.0 and the reaction rates were several times higher than those with ABD-F; it is suggested that the electron withdrawing effect of the dimethylsulphonamide group (SO2NMe2) is larger than that of the sulphonamide group (SO2NH2). No reaction occurred with alanine, proline, cystine or cysteic acid under the same conditions. The fluorescence intensities of the derivatives were found to be higher in neutral and acidic media than in alkaline solutions. The thiol derivatives of DBD-F were separated by high-performance liquid chromatography and detected fluorimetrically, the detection limits being 0.92, 0.16, 0.13, 0.16 and 0.32 pmol for cysteine, glutathione, homocysteine, N-acetylcysteine and alpha-mercaptopropionylglycine, respectively. The method was applied to the determination of thiols in rat tissues.  相似文献   

14.
A simple reversed-phase LC method capable of detecting ng/ml quantities of phenolic compounds in water is described. Pre-column derivatization with benzoyl chloride is used for the separation and determination o-cresol, m-cresol, p-cresol, phenol, resorcinol, catechol and hydroquinone in water. The benzoyl derivatives formed within in 15 min, were extracted with dietyl ether, and then analyzed by liquid chromatography with UV detection at 232 nm. With a mobile phase of acetonitrile-tetrahydrofuran-water (54:6:40, v/v) the seven derivatives were eluted in 15 min. The detection limits were between 0.05 and 0.50 ng/ml for 50 ml of a standard water sample. The method was applied to the analysis of phenols in wine and river water. The recovery of the derivatives from pure water was 81-94% with relative standard deviations of 2.5-5.0%.  相似文献   

15.
New achiral separating bifunctional reagents, dichlorides of methylphosphonic and O-ethyl-thiophophoric acids, have been used for the quantitative determination of the enantiomeric composition of α-amino acids (alanine, valine, proline), secondary alcohols (2-octanol, 2-pentanol, 1-methoxy-2-propanol) and α-phenylethylamine. The determination of the enantiomeric composition of optically active α-amino acids, secondary alcohols, and amines is based on the transformation of compounds into symmetric diastereometers using organophosphorous achiral bifunctional reagents followed by the determination of the derivatives by gas chromatography with a mass spectral detector.  相似文献   

16.
An analytical method was developed for the determination of thiols in biological samples. Reverse phase chromatography coupled to ICP quadrupole MS or Orbitrap MS was employed for the separation and detection of thiols. For the determination of total thiols, oxidized thiols were reduced using dithiothreitol (DTT). Reduction efficiencies for species of interest were found to be close to 100%. Reduced thiols were derivatized by p-hydroxymercuribenzoate (PHMB) and then separated on a C8 column. Optimization of the extraction, separation and detection steps of the HPLC-ICP-MS and HPLC-Orbitrap MS methods was carried out. Detection limits for cysteine, homocysteine, selenocysteine, glutathione, selenomethionine and cysteinyl-glycine were found to be 18, 34, 39, 12, 128 and 103 fmol, respectively, using HPLC-Orbitrap MS and 730, 1110, 440, 1110 and 580 fmol for cysteine, homocysteine, selenocysteine, glutathione, and cysteinyl-glycine using HPLC-ICP-MS. Contrary to expectation, the LODs and RSDs are higher for the HPLC-ICP-MS instrument, therefore HPLC-Orbitrap MS was used for the determination of thiols in yeast samples. Three different brands of baker's yeast and a selenized yeast were analyzed. The GSH and cysteine levels found in these samples ranged from 4.45 to 17.87 μmol g(-1) and 0.61 to 1.32 μmol g(-1), respectively.  相似文献   

17.
《Analytical letters》2012,45(17):1393-1410
Abstract

o-Phthalaldehyde (OPA), a primary amino compound and a thiol react to produce a ternary isoindole-type fluorophore. The effect of the structure of the constituent amino compound on the chemical stability of isoindole fluorophores was investigated. The amino compounds with steric hindrance around the -NH2 group such as L-tryptophan and L-Dopa exhibited a marked stabilization effect on the isoindole fluorophores. By using OPA and L-typtophan as reagents, a procedure was established for the fluorometric determination of thiols which permitted the determination of 2 nmol of L-cysteine (CySH). The possible mechanism for the instability of isoindole accelerated by increasing concentration of OPA was also discussed.  相似文献   

18.
Summary Fluorogenic reagents (luminarin 3, luminarin 11 and luminarin 12), having a quinolizinocoumarin moiety as fluorophore and a carboxylic acid hydrazide function as reacting group, have been developed. These reagents were found to be highly sensitive fluorescence derivatization reagents for aldehydes and ketones in high-performance liquid chromatography. The reagents readily react with carbonyl compounds in aqueous sulphuric acid solution (0.1 M) at room temperature to produce the corresponding hydrazone derivatives, which can be separated on both reversed or normal-phase column. The structures of the derivatives were studied, together with their properties in reversed and normalphase chromatographic systems. UV absorbance, corrected fluorescence spectral data and quantum yields of luminarin 3, luminarin 11 and luminarin 12 are presented. The detection limits (signal to noise ratio=3) for aldehydes and ketones were in the sub-pmol range. Luminarin 3 was also applied to the determination of hydroxymethylfurfural (HMF) in orange juices and concentrates. The method for HMF involves the solid-liquid extraction of the juice by using a C-18 cartridge prior to derivatization and normal-phase separation of the derivative with fluorimetric detection at 387 nmex., 444 nm em. The calibration curve was linear for amounts of HMF ranging from 0.1 to 10 nmol. Intrarun relative standard deviation was 12.8% for 0.1 nmol and 2.6% for 1 nmol. Recovery studies indicated an average of 98.7±1.9% for juice concentrate and 99.8±3.2% for pasteurized juice.  相似文献   

19.
The derivatization of the reduced-form thiols with SBD-F (7-fluoro-2,1,3-benzoxadiazole-4-sulfonate) and ABD-F (4-aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole) was studied. The yields of the derivatives of the reduced-form thiols (cysteine, homocysteine, reduced-form glutathione) with SBD-F at 60 degrees C for 45 min in the borate buffer (pH 9.3) were significantly decreased in the presence of the oxidized-form thiols (cystine, homocystine, oxidized-form glutathione) because of the thiol exchange reaction between the reduced-form and the oxidized-form thiols. The use of ABD-F at low temperature enabled the suppression of these thiol exchange reactions, and the recommended conditions were below 5 degrees C for 90 min in borate buffer (pH 9.3). These results suggest that ABD-F is a preferred derivatization reagent for the accurate determination of the reduced-form thiols in samples containing the oxidized-form thiols. In addition, it was also suggested that the derivatization of the reduced-form thiols should also be performed at low temperature when derivatization reagents such as o-phthalaldehyde (OPA) and monobromobimane (BrB) are used.  相似文献   

20.
The use of Eriochrome Black T in an alkaline, 40% methanol solution was found to be appropriate as post-column reagent for the determination of rare earths by ion chromatography. Detection of individual lanthanides and lanthanum was carried out at 512 nm and 650 nm after separation by dynamic cation exchange chromatography with gradient elution on C18 column and employing a solution containing alpha-hydroxyisobutiric acid/sodium octanesulfonate at pH 3.8 as eluent. The effect of the presence of micelles in the post-column reagent was studied. Sensitivities obtained by the addition of the cationic surfactants cetylpyridinium chloride (CPC) and hexadecyltrimethylammonium bromide (CTAB) were lower than those measured without surfactant addition. In some cases, the signal was totally suppressed. No change in sensitivity was observed with non-ionic (Triton X-100) or anionic (sodium dodecylsulphate, SDS) surfactants but a slight improvement in the baseline noise was observed with the SDS. An evaluation of the influence of chemical and operational variables on the post column reaction (PCR) reagent was carried out either by spectrophotometric tests or by chromatographic experiments. A comparison was performed between three PCR reagents: Eriochrome Black T and xylenol orange in the presence of a cationic surfactant and arsenazo III. Calibration response was linear up to an analyte concentration of 5.0 micrograms ml-1. Absolute detection limits lower than 7 and 17 ng were obtained at the detection wavelengths of 650 nm and 512 nm respectively, for all the natural lanthanides and lanthanum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号