首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在液芯光纤内产生共振和预共振喇曼效应,喇曼光谱强度可以大幅度提高,最高可达109倍.本文介绍获得光纤(预)共振喇曼光谱的可行性、实验及实验结果.用远离吸收带的激光激发获得了α甲基吡啶预共振喇曼光谱.用小功率激光(0.8mW)、低浓度溶液(9.6×10(-12)mol/L)还获得了β叶红素在CS2中的共振喇曼光谱.  相似文献   

2.
光纤预共振喇曼光谱的实验研究   总被引:1,自引:0,他引:1  
里佐威  高淑琴 《光学学报》1993,13(11):99-1002
应用液芯光纤技术,提高了预共振喇曼光谱强度10^2倍以上,用10mW较长波长(514.5nm,488.nm,454.5nm)激光激发,观察到了α甲基吡啶的预共振喇曼光谱线。  相似文献   

3.
报道了579 nm高功率KGd(WO4)2喇曼晶体外腔式喇曼黄光激光器的输出特性.基于808 nm脉冲激光二极管侧面泵浦Nd:YAG陶瓷、腔内BBO电光晶体同步延迟调Q和Ⅰ类临界相位匹配的LBO晶体腔外倍频方案,并通过外腔式KGW晶体Ng轴二阶斯托克斯喇曼频移,获得了579.54 nm黄光激光输出.当脉冲信号重复频率为1 kHz、532 nm泵浦光最高平均功率为5.02 W、脉冲宽度为10.1 ns时,获得了最高平均功率2.58 W、脉冲宽度7.4 ns、峰值功率348.6 kW的579.54 nm二阶斯托克斯喇曼黄光激光输出;532 nm至579.54 nm的光-光转化效率为51.4%、斜率效率为54.8%,光束质量因子Mx-579.542=5.829、My-579.542=6.336,输出功率不稳定性小于±2.35%.实验表明:外腔式喇曼结构能够高效地获得喇曼黄光,具有很高的光-光转化效率及良好的功率稳定性,并通过脉冲LD结合同步延迟电光调Q可获得高重复频率、高平均功率、窄脉冲宽度和高峰值功率的黄光激光输出.  相似文献   

4.
 利用若丹明B乙醇溶液的荧光改变了二硫化碳的一至三阶Stokes喇曼谱线的强度分布,选择性地增强了三阶Stokes喇曼谱线。在泵浦功率密度为~560MW.cm-2时,对染料摩尔浓度分别为~10-5、cm-5散射池和~10-4、1cm散射池进行实验,观察到二硫化碳的三阶Stokes喇曼谱线与染料激光形成的共振增强现象及、二阶Stokes喇曼谱线的部分或完全耗尽。  相似文献   

5.
从室温至180℃测量了BaTiO3和Ce:BaTiO3单晶的偏振喇曼谱,在X(ZZ)Y几何配置下发现了三条频率分别为986,1204和1480cm-1的新谱线.根据喇曼散射截面的温度依赖关系,确认这些新谱线对应二阶喇曼散射,而A1(TO)谱中位于275和514cm-1处的非对称宽峰则属于一阶喇曼散射.在此基础上,对立方相BaTiO3的喇曼谱和结构相变机制进行了讨论.通过比较B  相似文献   

6.
对氧化钇(Y2O3)部分稳定氧化锆(ZrO2)样品在室温下进行了Ni离子注入(140kev,5×1015-2×1017ios/cm2)和热退火处理.应用电学测量,Rutherford背散射技术(RBS),X射线光电子能谱(XPS)和喇曼光谱方法研究了Ni离子注入多晶ZrO2的表面电性能,注入层结构及其热退火的影响。  相似文献   

7.
用密度泛函理论B3LYP方法和6-311G(d,p)/Lanl2DZ优化得到黄曲霉素B1(AFB1)分子及其复合物AFB1-Ag的稳定结构,并计算了复合物的表面增强拉曼光谱和预共振拉曼光谱. 结果表明,AFB1分子的拉曼光谱很大程度依赖于吸附位点以及入射光的激发波长. 与分子的常规拉曼光谱相比,复合物表面增强拉曼光谱中C=O伸缩振动模的增强因子约为102~103复合物的极化率增强而导致的静态化学增强,并分析了振动模式的振动方向与其拉曼强度的关系.选择复合物最大吸收峰附近激发光266和482 nm以及远离共振吸收波长785和1064 nm作为入射光,计算得到不同入射光激发下复合物的预共振拉曼光谱.结果表明其增强因子最大达到104量级,主要是由电荷转移产生的共振增强引起的.  相似文献   

8.
喇曼光谱对血糖的半定量分析   总被引:2,自引:2,他引:0  
血糖检测一般采用酶化和生化方法,但这些方法都是有损破坏性的检测方法.本文利用喇曼光谱技术来检测血糖浓度,并且建一种新的数据分析方法来分析血糖的含量,以探索一种无损、快速的血糖检测方法.以小白鼠为实验模型,麻醉的小白鼠在注射葡萄糖后半个小时开始抽取小鼠尾巴处的血液进行喇曼光谱的获取,此后每间隔15 min对小鼠尾巴进行抽血并获取血液的喇曼光谱,在每次测量小鼠血液喇曼光谱的同时用血糖仪来监测血糖浓度的变化情况以用来做参比.1 125 cm-1是葡萄糖的喇曼特征峰,血液中的葡萄糖称为血糖,因此我们把血液光谱中的1 125 cm-1作为血糖峰,1 549 cm-1为血红蛋白的喇曼特征峰,人体中的血红蛋白是稳定的,所以本文以血红蛋白的峰1 549 cm-1作为内标来研究血液喇曼光谱中血糖峰的强度.结果表明1 125 cm-1/1 549 cm-1的变化可以很好地与血糖变化相对应,并且具有良好的线性关系.利用喇曼光谱技术可以无损地对血糖进行半定量分析.  相似文献   

9.
本文利用脉冲激光溅射-超声分子束载带离子源在气相中产生了HC2nO+ (n=3-6)正离子. 通过对贴附CO的络合物离子的红外光解离光谱实验获得了HC2nO+正离子在1600∽3500 cm-1范围内的红外光谱. 通过比较实验光谱和理论模拟光谱确定了HC2nO+正离子具有端接氢和氧的直线型碳链衍生物结构,基态为三重态,单重态比三重基态能量高10∽15 kcal/mol. 成键分析表明HC2nO+中的碳链具有连烯的结构特征.  相似文献   

10.
 利用自发喇曼成像技术实时监测氧碘激光器O2(1Δ)发生器流场组分,得到了发生器气流中O2(1Δ)和 O2(X3Σ)以及N2的自发喇曼散射光谱,由此得到了不同条件下的O2(1Δ)产率,测量误差不超过8%。  相似文献   

11.
拉曼光谱是研究水中生物分子重要的有效方法之一,然而由于拉曼散射截面小,特别是水分子的电子激发态能级高,因此水中生物分子的拉曼光谱测量甚为困难。将液芯光纤技术和共振拉曼技术结合起来,可大幅度提高拉曼光谱强度。实验中用可以获得最大的共振拉曼光谱强度的514.5 nm Ar+离子激光激发,分别用石英和Teflon液芯光纤对水中β-胡萝卜素生物分子进行了痕量检测研究。结果表明应用石英液芯光纤和Teflon液芯光纤可分别检测浓度为10-7~10-9mol·L-1和10-9~10-10mol·L-1的β-胡萝卜素。  相似文献   

12.
The time‐correlation function formalism has been used to calculate resonance Raman cross sections, excitation profiles, and electronic absorption spectra of the OClO molecule in the gas‐phase and in different solvents like cyclohexane, chloroform, and water. The multidimensional time domain integrals that arise in these calculations have been evaluated for the case in which an X2B1Ã2A1 electronic transition takes place between displaced‐distorted‐rotated harmonic potential energy surfaces. Ab initio calculations have been performed to provide the spectroscopic constants required for the evaluation of these integrals. The calculated absorption spectra and resonance Raman cross sections have been compared with the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
For the first time the bulk oriented single crystals ZnO:Mn are obtained and the polarized Raman spectra are studied at excitation in the visible and near infrared regions. The resonance enhancing of the Raman scattering by Mn-related modes is found at the visible excitation due to the extra optical absorption in ZnO at the addition of Mn. It is shown that the resonance-enhanced overtone of Mn-related silent modes may be responsible for an appearance of anomalous modes of the A1 symmetry at 500-600 cm−1. A Fermi resonance between the overtone and one-phonon mode is analyzed.  相似文献   

14.
15.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We study the optical properties of a single, semiconducting single-walled carbon nanotube (CNT) that is partially suspended across a trench and partially supported by a SiO2-substrate. By tuning the laser excitation energy across the E 33 excitonic resonance of the suspended CNT segment, the scattering intensities of the principal Raman transitions, the radial breathing mode (RBM), the D mode and the G mode show strong resonance enhancement of up to three orders of magnitude. In the supported part of the CNT, despite a loss of Raman scattering intensity of up to two orders of magnitude, we recover the E 33 excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak intensity ratio between G band and D band is highly sensitive to the presence of the substrate and varies by one order of magnitude, demonstrating the much higher defect density in the supported CNT segments. By comparing the E 33 resonance spectra measured by Raman excitation spectroscopy and photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we observe that the peak energy in the PL excitation spectrum is red-shifted by 40 meV. This shift is associated with the energy difference between the localized exciton dominating the PL excitation spectrum and the free exciton giving rise to the Raman excitation spectrum. High-resolution Raman spectra reveal substrate-induced symmetry breaking, as evidenced by the appearance of additional peaks in the strongly broadened Raman G band. Laser-induced line shifts of RBM and G band measured on the suspended CNT segment are both linear as a function of the laser excitation power. Stokes/anti-Stokes measurements, however, reveal an increase of the G phonon population while the RBM phonon population is rather independent of the laser excitation power.  相似文献   

17.
In this contribution we summarize recent experiments with the objective to generate optimized substrates for surface-enhanced Raman spectroscopy (SERS). For this purpose, the well-established laser-assisted growth technique has been applied, which relies on a precise control of the growth kinetics of supported metal nanoparticles. With this method reproducible and stable SERS substrates with tailor-made optical properties possing best field enhancements were produced for specific excitation wavelengths and detection ranges. Optimization of the SERS substrates has been achieved by stabilizing the localized surface plasmon polariton resonance (SPR) of gold nanoparticles in the vicinity of the laser wavelength of λ=647 nm and λ=785 nm used for SERS excitation. After nanoparticle preparation, SERS spectra of pyrene were obtained using naturally grown nanoparticles and nanoparticles prepared by laser-assisted growth. The most important result is that the optimized substrates prepared by laser-assisted growth exhibit a significantly higher signal-to-noise ratio as compared to naturally grown nanoparticles. They are even better than substrates whose SPR has been tuned to the excitation wavelength by an elevated temperature during preparation. Another important observation is that all SERS spectra exhibit excellent reproducibility and the substrates do not show degradation during the measurements. Finally, the SERS enhancement factors due to the optimized substrates have been estimated and are on the order of 105 to 106.  相似文献   

18.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The composition of the surface film formed on pure iron was investigated in a solution of 0.05 M NaOH and 0.05 M NaCl. Raman spectra of the film were recorded in situ during anodic polarisation over the passive region after addition of the NaCl to the electrolyte, under conditions of preresonance enhancement using excitation at 636.4 nm. Multivariate curve resolution with alternating least squares analysis was applied to the spectra to measure the relative amounts of different iron oxide and oxyhydroxides in the film at different potentials. The water content was also determined in this way from Raman spectra recorded using excitation at 514.5 nm. It was found that the composition of the film and the amount of incorporated water were influenced by the applied anodic potential. The results show that stable pitting can occur when the composition changes from the primary constituents β‐FeOOH and Green Complex (a hydrated, amorphous magnetite) with smaller amounts of γ‐Fe2O3 and γ‐FeOOH, to δ‐FeOOH and Green Complex, simultaneously with a reduction in water content. These changes result in conditions that favour the rate of localised breakdown of the film by Cl ions over the rate of repassivation by water in the passive film. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The intensities of the Raman lines of anthracene in solution and in the pure crystal at room temperature have been measured using several excitation frequencies (ν0) in the pre-resonance region. The data were used to derive molecular scattering elements αii at each νo for a number of ag fundamentals. While the values of αxx and αyy are constant over the restricted range of excitation used, αzz shows an enhancement as νo moves towards resonance with the first absorption system (I). Overlap factors were determined from the fluorescence spectrum of anthracene in a biphenyl matrix, and these values were used to calculate the contribution αzz(I) due to scattering off the first excited electronic state. Working beyond the oriented-gas assumption improved the fit between calculated and observed enhancement. There is a measurable background contribution to αzz due to scattering off higher excited states and this has an opposite algebraic sign from αzz(I) for all ag fundamentals except possibly for the 394 cm−1 mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号