首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of inclusivepp→π?+? in terms of the covariant Boltzmann factor (BF) including the chemical potential μ indicates a) that the temperatureT increases less rapidly than expected from Stefan's law, b) that a scaling property holds for the fibreball velocity of π? secondaries, leading to a multiplicity law like ~E cm 1/2 at high energy, and c) that μπ is related to the quark mass: μπ=2m q ?m π the quark massm q determined by \(T_{\pi ^ - } \) at \(\bar pp\) threshold beingm q =3Tπ?330 MeV. Because ofthreshold effects \(T_{\bar p}< T_{\pi ^ - } \) , whereas \({{\mu _p } \mathord{\left/ {\vphantom {{\mu _p } {\mu _{\pi ^ - } }}} \right. \kern-0em} {\mu _{\pi ^ - } }} \simeq {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}\) as expected from the quark contents of \(\bar p\) and π. The antinuclei \(\bar d\) and \({{\bar t} \mathord{\left/ {\vphantom {{\bar t} {\overline {He^3 } }}} \right. \kern-0em} {\overline {He^3 } }}\) observed inpp events are formed by coalescence of \(\bar p\) and \(\bar n\) produced in thepp collision. Semi-empirical formulae are proposed to estimate multiplicities of π?, \(\bar p\) and antinuclei.  相似文献   

2.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

3.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

4.
5.
CP violation in partial-decay-rate asymmetries are examined for some two-body baryonic decays of \(B_d^0 - \bar B_d^0 \) system. We discuss two feasible experimental circumstances: the symmetrice + e ? collisions (i) on theZ 0 resonance to produce incoherent \(B_d^0 \bar B_d^0 \) states, and (ii) just above the ?(4S) resonance to produceC=even \(B_d^0 \bar B_d^0 \) states. Using the quark-diagram scheme, we estimate the branching ratios of those decays, and the numbers ofb \(\bar b\) pairs needed for testing theCP-violating effects for 3σ signature. We find that the promising channels may beB d 0 , \(\bar B_d^0 \to p\bar p\) , \(\Delta ^ + \bar \Delta ^ - \) , \(p\bar \Delta ^ - \) , \(\Delta ^ + \bar p\) , \(n\bar n\) , \(\Delta ^0 \bar \Delta ^0 \) , \(n\bar \Delta ^0 \) , \(\Delta ^0 \bar n\) , \(\Sigma _c^ + \bar \Sigma _c^ - \) , \(\Lambda _c^ + \bar \Lambda _c^ - \) , \(\Sigma _c^ + \bar \Lambda _c^ - \) , \(\Lambda _c^ + \bar \Sigma _c^ - \) , \(\Sigma _c^0 \bar \Sigma _c^0 \) , \(\Xi _c^0 \bar \Xi _c^0 \) , which should be interesting for experimental observation.  相似文献   

6.
L P Pitaevskii 《Pramana》1987,28(5):589-589
Landau’s criterion plays an important role in the theory of superfluidity. According to this criterion, superfluid motion is possible if \(\tilde \varepsilon \left( p \right) \equiv \varepsilon \left( p \right) + pV > 0\) along the curve of the spectrum?(p) of excitations. For4He it means thatv<v c,v c≈60 m/sec.v s is equal to the tangent of the slope to the roton part of the spectrum. The question of what happens to the liquid when this velocity is exceeded, as far as we know, remains unclear. We shall show that for small excesses abovev c a one-dimensional periodic structure appears in the helium. A wave vector of this structure oriented opposite to the flow and equal toρ c/h whereρ c is the momentum at the tangent point. The quantity \(\tilde \varepsilon \left( p \right)\) is the energy of excitation in the liquid moving with velocity v. Inequality of Landau ensures that \(\tilde \varepsilon \) is positive. If \(\tilde \varepsilon \) becomes negative, then the boson distribution function \(n\left( {\tilde \varepsilon } \right)\) becomes negative, indicating the impossibility of thermodynamic equilibrium of the ideal gas of rotons; therefore the interaction between them must be taken into account. The final form of the energy operator is $$\hat H = \int {\left\{ {\hat \psi + \tilde \varepsilon \left( p \right)\hat \psi + \tfrac{g}{2}\hat \psi + \hat \psi + \hat \psi \hat \psi } \right\}} d^3 x, g \sim 2 \cdot 10^{ - 38} erg.cm.$$ Then we can seek the rotonψ-operator in the formψ=ηexp(i p c r/h), determiningη from the condition that the energy is minimized. The result is (η)2=(v?v c)ρ c/g, forv>v c. The plane waveψ corresponds to a uniform distribution of rotons. It leads, however, to a spatial modulation of the density of the helium, since the density operator \(\hat n\) contains a term which is linear in the operator \(\psi :\hat n = n_0 + \left( {n_0 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} {A \mathord{\left/ {\vphantom {A {\hat \psi \to \hat \psi ^ + }}} \right. \kern-0em} {\hat \psi \to \hat \psi ^ + }}\) ), where |A|2ρ c 2 /2m?(ρ c). Finally we find that the density of helium is modulated according to the law $$\frac{{n - n_0 }}{{n_0 }} = \left[ {\frac{{\left| A \right|^2 \left( {\nu - \nu _c } \right)\rho _c }}{{n_0 g}}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x \approx 2,6\left[ {\frac{{\nu - \nu _c }}{{\nu _c }}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x$$ . This phenomenon can be observed, in principle, in the experiments on scattering ofx-rays in moving helium.  相似文献   

7.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

8.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

9.
TheK-conversion coefficient of the 53.3 keV transition in73Ge was measured by coincidence techniques to be αk 1=7.1 ± 0.6 indicating very good agreement with heory forM2-radiation. The \(\frac{K}{{L + M}}\) -ratio of the 13.34 keV transition to the ground state was determined using the same techniques. The resulting value \(\left( {\frac{K}{{L + M}}} \right)_2 \) =0.36 ± 0.03 supports theE2-character of this radiation and therefore a spin assignment of \(\frac{5}{2}\) for the 13.34 keV level. The measured lifetime of this transition (T 1,2=(2.95 ± 0.05) μsec) corresponds to a factor of 15 greater than the Weisskopf estimation for a pureE2-transition. A short discussion of a possible transfer of the collectivity of the72Ge-nucleus to the73Ge-nucleus is given.  相似文献   

10.
We consider the nonlinear elliptic degenerate equation (1) $$ - x^2 \left( {\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }}} \right) + 2u = f(u)in\Omega _a ,$$ where $$\Omega _a = \left\{ {(x,y) \in \mathbb{R}^2 ,0< x< a,\left| y \right|< a} \right\}$$ for some constanta>0 andf is aC functions on ? such thatf(0)=f′(0)=0. Our main result asserts that: ifuC \((\bar \Omega _a )\) satisfies (2) $$u(0,y) = 0for\left| y \right|< a,$$ thenx ?2 u(x,y)∈C \(\left( {\bar \Omega _{a/2} } \right)\) and in particularuC \(\left( {\bar \Omega _{a/2} } \right)\) .  相似文献   

11.
The inspiring “numerology” uncovered by Dirac, Eddington, Weyl,et al. can be explained and derived when it is slightly modified so to connect the “gravitational world” (cosmos) with the “strong world” (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the “Large Number Theory,” cosmos and hadrons are considered to be (finite)similar systems, so that the ratio \({{\bar R} \mathord{\left/ {\vphantom {{\bar R} {\bar r}}} \right. \kern-0em} {\bar r}}\) of the cosmos typical length \(\bar R\) to the hadron typical length \(\bar r\) is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle—according to the “cyclical bigbang” hypothesis—then \(\bar R\) and \(\bar r\) can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constantG results to be independent of time. The present note is based on work done in collaboration with P. Caldirola, G. D. Maccarrone, and M. Pav?i?.  相似文献   

12.
The problem of thermal-field ionization of deep impurity centers in semiconductors is studied. It is shown that \(W_{ion} = W_0 e^{\alpha F^2 }\) , where F is the electric field strength. Also, the lifetime for multiphonon nonradiative capture is calculated as a function of F. It is shown that the relative change in lifetime is $$\frac{{\Delta \tau }}{{\tau ^0 }} = \frac{{\tau ---\tau _0 }}{{\tau _0 }} \approx - \alpha F^2 .$$   相似文献   

13.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

14.
Right handed weak quark currents coupled to the usual left handed weak lepton current would be seen in inclusive antineutrino scattering on nuclei as a contribution at largey with the quark (not antiquark) structure function. We do not see such a term, and can therefore put an upper limit on the relative strengths of such right handed currents: \(\varrho ^2 = \frac{{\sigma _R }}{{\sigma _L }}< 0.009\) , 90% confidence. This measurement puts limits on the mixing angle of left-right symmetric models. In distinction to similar limits derived from muon decay or β decay, our limits are also valid if the right handed neutrino is heavy.  相似文献   

15.
The relativistic3 P 0 model is applied to the \(p\bar p\) annihilation into twoS-wave mesons. We calculate the branching ratios of the \(p\bar p\) annihilation at rest into two mesons in the quark rearrangement model and in the quark annihilation model. In the annihilation model, we project the intermediate \(cq\bar q\) state to eigenstates ofSU (4) with the relative angular momentum of \(cq\bar q\) equals orp. In the rearrangement model, no annihilation occurs from theS-wave \(p\bar p\) and certain branching ratios conflict with the experimental data. Detailed comparison with the experiment needs inclusion ofP-wave mesons in the final state, nevertheless we find that the annihilation model gives qualitatively better results than the rearrangement model. The effect of initial state interaction through \(N\bar \Delta \pm \Delta \bar {\rm N}\) or \(\Delta \bar \Delta \) channels is discussed.  相似文献   

16.
A non-relativistic quark model is used to calculate the decay widths of baryonium states to \(N\bar N,N\bar \Delta \) , \(N\bar N,N\bar \Delta \) and \(\Delta \bar \Delta \) . Large widths are found and used to estimate the \(\bar pp\) and \(\bar pn\) elastic cross-sections. The couplings of baryonium states to two identical mesons are also investigated.  相似文献   

17.
Existing data are used to show that the structure functions of meson production in \(\bar p\) p annihilation are characterized by (1?x)α distributions with α consistently less than in \(\bar p\) p non-annihilation orpp interactions. The energy dependence of \(\bar p\) p annihilation is interpreted as being given by the probability of at least one valence quark of \(\bar p\) andp being in the wee region. The annihilation is attributed to the recombination of a sea antiquark with a quark of the dismembered spectator valence di-quark system. This model can describe the existing annihilation data. Other models are briefly reviewed with respect to features of annihilation data.  相似文献   

18.
We present data on \(\bar pn\) and π? n collisions obtained from an exposure of the 30′' FNAL deuterium filled bubble chamber to a mixed \({{\bar p} \mathord{\left/ {\vphantom {{\bar p} {\pi ^ - }}} \right. \kern-0em} {\pi ^ - }}\) beam with a momentum of 100 GeV/c. We find that in 17±2% of the collisions with the antiproton there is an interaction on the spectator while for the collisions with π? mesons the corresponding number is 15±2%. The \(\bar pn\) and π? n multiplicity distributions have average charged multiplicities of 6.46±0.07 and 6.53±0.08 respectively. The average multiplicities for both types of interactions are slightly smaller than those for the corresponding reactions on hydrogen by an amount that is the same as observed at other energies. As an estimate of \(\bar pn\) annihilation we have calculated the difference \(\sigma _n (\bar pn) - \sigma _n (pn)\) for each prong numbern. We find an average multiplicity of 9±1, a value close to that for \(\bar pp\) annihilation at the same energy. combining our data with lower energy \(\bar pn\) annihilation data, we observe that the average negative multiplicity is systematically larger than that for \(\bar pp\) annihilation similar to the difference between neutron and proton target data with other beam projectiles.  相似文献   

19.
A method is described for unfolding the singularities in superspace, \(\mathcal{G} = \mathfrak{M}/\mathfrak{D}\) , the space of Riemannian geometries of a manifoldM. This unfolded superspace is described by the projection $$\mathcal{G}_{F\left( M \right)} = \frac{{\mathfrak{M} \times F\left( M \right)}}{\mathfrak{D}} \to \frac{\mathfrak{M}}{\mathfrak{D}} = \mathcal{G}$$ whereF(M) is the frame bundle ofM. The unfolded space \(\mathcal{G}_{F\left( M \right)}\) is infinite-dimensional manifold without singularities. Moreover, as expected, the unfolding of \(\mathcal{G}_{F\left( M \right)}\) at each geometry [g o] ∈ \(\mathcal{G}\) is parameterized by the isometry groupIg o (M) of g0. Our construction is natural, is generally covariant with respect to all coordinate transformations, and gives the necessary information at each geometry to make \(\mathcal{G}\) a manifold. This construction is a canonical and geometric model of a nonrelativistic construction that unfolds superspace by restricting to those coordinate transformations that fix a frame at a point. These particular unfoldings are tied together by an infinite-dimensional fiber bundleE overM, associated with the frame bundleF(M), with standard fiber \(\mathcal{G}_{F\left( M \right)}\) , and with fiber at a point inM being the particular noncanonical unfolding of \(\mathcal{G}\) based at that point. ThusE is the totality of all the particular unfoldings, and so is a grand unfolding of \(\mathcal{G}\) .  相似文献   

20.
The decays of3 S 1 quarkonia into a photon and a scalar or pseudoscalar Higgs particle are examined, taking into account the bound-state dynamics in the framework of a nonrelativistic potential model. We find that for realistic quark potentials the naive calculation [1] overestimates the scalar rate. Numerical results are obtained for the \(\bar bb\) and \(\bar tt\) quark systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号