首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, highly efficient magnetic chitosan nanoparticles were prepared by the glutaraldehyde cross-linking method and then chemically-modified with amino groups through reaction between triethylenetramine and glycidyl methacrylate. The adsorption kinetics and isotherms of these novel adsorbents fit the pseudo-second-order model and the Langmuir model. The maximum adsorption capacities were 293?mg/g at pH?=?4.3 and t?=?1.4 hours. The rate-limiting step was the chemical adsorption. Further recycling experiments showed that the adsorbent provided the potential regeneration and reuse after adsorbing Cu2+. All the experimental results demonstrated that the adsorbent had a potential application in Cu2+ removal from wastewater.  相似文献   

2.
《Arabian Journal of Chemistry》2020,13(11):8080-8091
Dye wastewater from industries is posing tremendous health hazards. The lethal dyes can be eliminated using nanomaterials and scientific approach like adsorption which is facile, cheap, safe as well as ecofriendly. Fe3O4-CuO-AC composite was prepared by a hydrothermal method and used for the removal of dyes in wastewater. The composite material was characterized by various techniques such as XRD, SEM, EDS, TEM and FT-IR. The Fe3O4-CuO-AC composite was used to treat five types of dyes in water. Fe3O4-CuO-AC composite showed the highest adsorption capability for bromophenol blue (BPB) dye. The effects of initial concentration, pH, the amount of adsorbent and temperature were also studied. The optimum conditions were found to be 20 ppm dye concentration, pH 9, an adsorbent dose of 0.06 gL─1 at 65 °C. A removal efficiency of 97% was obtained for BPB dye during 120 min of adsorption. Kinetic studies indicated that a pseudo-second order is the most suitable model for the adsorption process. The Fe3O4-CuO-AC composite showed better adsorption capacity as compare to Fe3O4-AC except for the Methyl green dye. The maximum adsorption capacity was found to be 88.60 mg/g for BPB. Additionally, the thermodynamic parameters (Δ, Δ and Δ) showed that the process was spontaneous and exothermic. All the above results revealed that the Fe3O4-CuO-AC compositecan be an effective adsorbent for removing dyes from wastewater.  相似文献   

3.
Manganese oxide nanocomposite (Mn2O3/Mn3O4) was prepared by sol-gel technique and used as an adsorbent. Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) were used to characterize the adsorbent. The response surface methodology (RSM) was employed to evaluate the effects of solution pH, initial Fe (III) ions concentration, adsorbent weight, and contact time on the removal ratio of the Fe (III) ions. A total of 27 adsorption experimental runs were carried out employing the detailed conditions designed based on the Box-Behnken design (BBD). Results showed that the pH of the solution and initial Fe (III) ions concentration were the most significant parameters for Fe (III) ions removal. In process optimization, the maximal value of the removal ratio of Fe (III) was achieved as 95.80%. Moreover, the corresponding optimal parameters of adsorption process were as: contact time?=?62.5?min, initial Fe (III) concentration?=?50?mg/L, adsorbent weight?=?0.5?g, and pH?=?5. The experimental confirmation tests showed a strong correlation between the predicted and experimental responses (R2?=?0.9803). The fitness of equilibrium data to common isotherm equations such as Langmuir, Freundlich, and Temkin were also tested. The sorption isotherm of adsorbent was best described by the Langmuir model. The kinetic data were analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models. The adsorption kinetics of Fe (III) ions were well fitted with the pseudo-second-order kinetic model.  相似文献   

4.
In-situ synthesis of magnetic nanocomposites with (NiFe2O4/CuO/FeO) crystal phases has been done using a sol-gel method by taking a non-stoichiometric composition of the precursors. The average particle size of the nanocomposites was calculated using X-ray diffraction (XRD) and high resolution tunneling electron microscope (HR-TEM) and it turns out to be ∼20 nm. The vibrating sample magnetometer (VSM) measurements demonstrate the ferromagnetic nature of the nanocomposites. The synthesized nanocomposite was used to prepare magnetic fluid using tetramethylammonium hydroxide as a surfactant and its stability in the solution was also discussed.  相似文献   

5.
The batch removal of arsenic from aqueous solution using low-cost adsorbent (powdered eggshell) under the influences of initial arsenic ion concentrations (0.50 to 1.50 mg/L), pH (3.2 to 11.5) and particle size of eggshells (63 to 150 μm) were investigated. Eggshells were collected from Obafemi Awolowo University, Ile-Ife, washed with distilled water, air dried, ground into powder and sieved into different sieve sizes using British standard sieve. Powdered eggshells were stored in a desiccator for use. Adsorption isotherms and dynamics of arsenic onto PES were studied. The study revealed that there was a slight reduction in the rate of adsorption of arsenic ion onto the larger particle size, but adsorption capacity and parameters were unaffected. Powdered eggshell with particle size of 63 μm removed up to 99.6% of the 1.5 mg/L of arsenic ion in synthetic water within the first 6 hours but decreased to 98.4% and 97.4% when the powdered eggshell particle sizes were increased to 75 and 150 μm respectively. The pH optimum for arsenic removal was 7.2. The adsorption isotherms and adsorption dynamic kinetic studied through the use of graphical method revealed that Freundlich, activated sludge adsorption and pseudo second-order kinetic models correlate significantly with the experimental data with correlation coefficient of not less than 0.964.  相似文献   

6.
Chitosan‐iron ions complex (CS‐Fe(II,III) complex) was used as precursor to synthesize magnetite nanocrystals and the mechanism was discussed. The magnetite nanocrystals have diameters of about 10 nm and clusters were formed due to slight aggregation of several magnetite nanocrystals. FT‐IR and X‐ray photoelectron spectrometer (XPS) investigations indicated that the Fe(II) and Fe(III) were chelated by ? NH2 and ? OH groups of chitosan in CS‐Fe(II,III) complex, and the molar ratio of ? NH2/Fe(II,III) was approximately 2. This chelation effect destroyed the hydrogen bonds of chitosan. In the following alkali treatment process, the chelated Fe(II) and Fe(III) provided nucleation site and formed the magnetite nanocrystals. After alkali treatment, the chelation effect between iron ions and ? NH2 groups disappeared and some kind of weak interaction formed between magnetite and ? NH2 groups. Moreover, the ? OH groups of chitosan have an interaction with the synthesized magnetite nanocrystals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The photolysis of Fe(III)-pyruvate and Fe(III)-citrate complexes in water produces hydroxyl radicals in the presence of dissolved oxygen, and can promote the oxidation of organic compounds. The photodegradation of glyphosate with Fe(III)-pyruvate and Fe(III)-citrate complexes was investigated under irradiation at λ?≥?365?nm. The effect of initial concentration of glyphosate, the initial pH value, and the Fe(III)/carboxylate ratio were examined. Upon irradiation of glyphosate aqueous solution with the complexes in the acidic range of natural waters, the bioavailable orthophosphate could be released from degradation of glyphosate. The amount of orthophosphate increased with increasing Fe(III)/carboxylate ratio.  相似文献   

8.
The mechanistic aspects of improved aqueous removal of methyl orange (MO) dyes using high performance novel magnetic MgAlNi barium-ferrite (MgAlNi-BaFe) ternary double layer hydroxide (LDH) nanocomposites is reported in this study. Detailed surface characterization coupled with kinetic, equilibrium, thermodynamics and regeneration studies were undertaken under different operational conditions of temperature (298–318 K), initial concentration (20–100 mg/L), pH (2–6). The kinetic results show that MO sorption was mainly, associated with pseudo-second order and intra-particular diffusion process. The MO adsorption onto the MgAlNi-BaFe nanocomposites suggests a multi-layered sorption process that is endothermic and spontaneous in nature. The MO adsorption mechanism insight taken in cognizance of FTIR, XRD, pKa, zeta potential, the adsorbates surface functional groups and the adsorbate-adsorbent surface charges interactions suggest involvement of hydrogen bonding and n-π interactions, predominantly via physisorption process (ΔG° = −7.406 to −5.69 kJ/mol). The excellent adsorptive performance of the MgAlNi-BaFe adsorbents for removal of MO from water compared with other magnetic LDH nanocomposites was further elucidated via the MgAlNi-BaFe nanomaterials high rates of regeneration and superior performances for three successive desorption-adsorption cycles. This study demonstrates the high potentials of employing MgAlNi-BaFe nanomaterials for removal of dyes from water and wastewater.  相似文献   

9.
This study is focused on the investigation of low iron lateritic clay-based geopolymer as a potential adsorbent for the higher uptake of Ni(II) and Co(II) ions from aqueous solutions. BET analysis revealed that the sieved geopolymer sample (SGS) was characterized by 17.441 m2/g of surface area, 0.005 cm3/g of pore volume, and 13.549 Å of pore diameter. SEM investigation confirmed the presence of pores and cavities onto the surface of SGS. XRD analysis showed that the geopolymer is semi-crystalline in nature. It was found that the adsorption ability of SGS remained 520 mg/g for Ni(II) ions and 500 mg/g for Co(II) ions when 0.5 M solutions were stirred with SGS for 60 min. The temperature and pH of the solution were maintained at 60 °C and 7.0, respectively. The adsorption data of both heavy metal (HM) ions fitted best in the pseudo-second-order kinetic model. The low activation energy value i.e. 2.507 kJ/mol for Ni(II) ions and 2.286 kJ/mol for Co(II) ions confirmed adsorption is physisorption. Adsorption data were tested with Langmuir and Freundlich models, the data showed comparatively better fitting in the Freundlich model. The greater value of monolayer adsorption capacity (Xm) for Ni(II) ions was found 1.77 × 10−2 mol/g while for Co(II) ions it remained 1.69 × 10−2 mol/g confirming the better interaction of metal ions with the adsorbent surface. Negative values of ΔG° confirmed the spontaneity of the process while the positive value of ΔS° showed the randomness of adsorbate particles. The positive value of ΔH° showed that the adsorption process remained endothermic for both HM ions. The experimental results confirmed the ability of laterite clay-based geopolymer for better removal of HM ions and hence can be employed for the wastewater treatment processes at low-cost adsorbent.  相似文献   

10.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   

11.
12.
Poly(vinylpyridine) WH-225 resin was prepared and characterized.Compared with the commercial hypercrosslinked adsorbent NDA-100 and macroporous adsorbent XAD-4 resins,the newly synthesized poly(vinylpyridine) WH-225 resin exhibited the highest adsorption capacity toward SIPA from aqueous solution.  相似文献   

13.
Functional cross-linked polymers (Poly(AA-co-DVB)) were synthesized using a one-step method. The properties of Poly(AA-co-DVB) were measured by SEM, FTIR, and TGA. The adsorption capacity of the Poly(AA-co-DVB) was investigated using methylene blue as an adsorbate. The effect of the mole compositions of acrylic acid and divinylbenzene monomers on the adsorption capacity was investigated in detail. The initial pH of solutions and contact time were also studied. The kinetics and isotherms of the adsorption process were also investigated. The result showed that the maximum equilibrium adsorption capacity was 1698.9?mg/g at room temperature and the adsorption kinetic was well fitted by a pseudo-second-order model and the adsorption isotherm agreed well with the Langmuir model.  相似文献   

14.
Worldwide, arsenic contamination has become a matter of extreme importance owing to its potential toxic, carcinogenic and mutagenic impact on human health and the environment. The magnetite-loaded biochar has received increasing attention for the removal of arsenic (As) in contaminated water and soil. The present study reports a facile synthesis, characterization and adsorption characteristics of a novel magnetite impregnated nitrogen-doped hybrid biochar (N/Fe3O4@BC) for efficient arsenate, As(V) and arsenite, As(III) removal from aqueous environment. The as-synthesized material (N/Fe3O4@BC) characterization via XRD, BET, FTIR, SEM/EDS clearly revealed magnetite (Fe3O4) impregnation onto biochar matrix. Furthermore, the adsorbent (N/Fe3O4@BC) selectivity results showed that such a combination plays an important role in targeted molecule removal from aqueous environments and compensates for the reduced surface area. The maximum monolayer adsorption (Qmax) of developed adsorbent (N/Fe3O4@BC) (18.15 mg/g and 9.87 mg/g) was significantly higher than that of pristine biochar (BC) (9.89 & 8.12 mg/g) and magnetite nano-particles (MNPs) [7.38 & 8.56 mg/g] for both As(III) and As(V), respectively. Isotherm and kinetic data were well fitted by Langmuir (R2 = 0.993) and Pseudo first order model (R2 = 0.992) thereby indicating physico-chemical sorption as a rate-limiting step. The co-anions (PO43-) effect was more significant for both As(III) and As (V) removal owing to similar outer electronic structure. Mechanistic insights (pH and FTIR spectra) further demonstrated the remarkable contribution of surface groups (OH, –NH2 and –COOH), electrostatic attraction (via H- bonds), surface complexation and ion exchange followed by external mass transfer diffusion and As(III) oxidation into As(V) by (N/Fe3O4@BC) reactive oxygen species. Moreover, successful desorption was achieved at varying rates up to 7th regeneration cycle thereby showing (N/Fe3O4@BC) potential practical application. Thus, this work provides a novel insight for the fabrication of novel magnetic biochar for As removal from contaminated water in natural, engineering and environmental settings.  相似文献   

15.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

16.
Due to the low permeability, high swelling capacity and good retardation properties, bentonite has been considered as the main component of buffer/backfill material for high level radioactive wastes repository all over the world. The adsorptions of metal ion were widely investigated recently. In this presentation, we provide an easy-to-use method to immobilize 8-hydroxyquinoline onto the surface of bentonite for the use of adsorption studies of La(III) from the aqueous solution. The effects of various parameters such as contact time, pH of the solution, ionic strength and metal ion concentration on the adsorption were investigated by the batch experiments. The biggest adsorption capacity is 41.7 mg/g, higher than the value reported by our previous work which is performed by the raw bentonite. Langmuir isotherm fits the experimental data well and the adsorption follows pseudo-second-order kinetic model. In summary, 8-hydroxyquinoline immobilized GMZ bentonite is an effective adsorbent for the removal of La(III) from aqueous solutions.  相似文献   

17.
The attapulgite/iron oxide magnetic nanocomposites were prepared by coprecipitation method and characterized by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer and Fourier transform infrared sorption spectroscopy. The results of characterization showed that iron oxides were successfully deposited on the surfaces of attapulgite. The prepared magnetic nanocomposites were applied to remove radionuclide U(VI) ions from aqueous solutions by using batch technique and magnetic separation method. The results showed that the sorption of U(VI) on attapulgite/iron oxide magnetic composites was strongly dependent on ionic strength and pH at low pH values, and was independent of ionic strength at high pH values. The interaction of U(VI) with the magnetic nanocomposites was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, and was controlled by inner-sphere surface complexation or multinuclear surface complexation at high pH values. With increasing temperature, the sorption of U(VI) on attapulgite/iron oxide magnetic composites increased and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on the magnetic nanocomposites was a spontaneous and endothermic process. The high sorption capacity and easy magnetic separation of the attapulgite/iron oxide magnetic composites make the material as suitable sorbent in nuclear waste management.  相似文献   

18.
Summary The ion-exchange and sorption characteristics of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins show high uptake for Co(II) and Eu(III) ions in aqueous solutions in a wide range of pH. The selectivity of the resins for Co(II) or Eu(III) species in presence of some competing ions and complexing agents (as Na+, Fe3+, EDTANa2, etc.) was compared. Various factors that could affect the sorption behavior of metal ions (Co(II) and Eu(III)) on the prepared polymeric composite resins were studied such as ionic strength, contact time, volume mass ratio.  相似文献   

19.
Journal of Radioanalytical and Nuclear Chemistry - Functionalized magnetic graphene oxide nanoribbons (MGONRs) composite material was synthesized by hydrothermal treatment method using graphene...  相似文献   

20.
A novel glutaraldehyde cross-linked epoxyaminated chitosan (GA-C-ENCS) prepared through chemical modification was used as an adsorbent for the removal and recovery of Cu(II) from aqueous media. The adsorbent was characterized by FTIR, SEM-EDS, ESR, TG/DTG, BET-surface area and potentiometric titration. The Cu(II) adsorption process, which was pH dependent showed maximum removal at pH 6.0. Adsorption equilibrium was achieved within 3 h. The adsorption of Cu(II) followed a reversible-first-order kinetics. The equilibrium data were evaluated using the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The best interpretation for the equilibrium data was given by the Dubinin–Radushkevich isotherm. The adsorption capacity of the adsorbent increased from 3.11 to 3.71 mmol g−1 when the temperature was increased from 20 to 50 °C. The complete removal of 20.7 mg L−1 Cu(II) from electroplating industry wastewater was achieved by 0.4 g L−1 GA-C-ENCS. Regeneration experiments were tried for four cycles and the results indicate a capacity loss of <7.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号