首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preferential binding of F-actin to lipid bilayers containing ponticulin was investigated on both planar supported bilayers and on a cholesterol-based tethering system. The transmembrane protein ponticulin in Dictyostelium discoideum is known to provide a direct link between the actin cytoskeleton and the cell membrane ( Wuestehube, L. J. ; Luna, E. J. J. Cell Biol. 1987, 105, 1741- 1751 ). Purification of ponticulin has allowed an in vitro model of the F-actin cytoskeletal scaffold system to be formed and investigated by AFM, epi-fluorescence microscopy, surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D). Single filament features of F-actin bound to the ponticulin containing lipid bilayer are shown by AFM to have a pitch of 37.3 +/- 1.1 nm and a filament height of 7.0 +/- 1.6 nm. The complementary techniques of QCM-D and SPR were used to obtain dissociation constants for the interaction of F-actin with ponticulin containing bilayers, giving 10.5 +/- 1.7 microM for a physisorbed bilayer and 10.8 +/- 3.6 microM for a tethered bilayer, respectively.  相似文献   

2.
An alternative setup for Magic Angle Oriented Spinning Spectroscopy is proposed. Samples were prepared by orienting lipid bilayers onto polymer films, which were wrapped into a spiral so as to fit into 4 or 7 mm MAS rotors. This geometry resulted in narrow line widths and a higher upper spinning limit when compared to the conventional MAOSS setup with stacked glass plates. Whereas orientational information was extracted from low spinning spectra, fast spinning will be applicable to high-resolution multidimensional NMR pulse sequences.  相似文献   

3.
Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.  相似文献   

4.
There is substantial scientific and practical interest in engineering supported lipid bilayers with asymmetric lipid distributions as models for biological cell membranes. In principle, it should be possible to make asymmetric supported lipid bilayers by either the Langmuir-Blodgett/Schafer (LB/LS) or Langmuir-Blodgett/vesicle fusion (LB/VF) techniques (Kalb et al. Biochim. Biophys. Acta 1992, 1103, 307-316). However, the retention of asymmetry in biologically relevant lipid bilayers has never been experimentally examined in any of these systems. In the present work, we developed a technique that is based on fluorescence interference contrast (FLIC) microscopy to measure lipid asymmetry in supported bilayers. We compared the final degree of lipid asymmetry in LB/LS and LB/VF bilayers with and without cholesterol in liquid-ordered (l(o)) and liquid-disordered (l(d)) phases. Of five different fluorescent lipid probes that were examined, 1,2-dipalmitoyl-phosphatidylethanolamine-N-[lissamine rhodamine B] was the best for studying supported bilayers of complex composition and phase by FLIC microscopy. An asymmetrically labeled bilayer made by the LB/LS method was found to be at best 70-80% asymmetric once completed. In LB/LS bilayers of either l(o) or l(d) phase, cholesterol increased the degree of lipid mixing between the opposing monolayers. The use of a tethered polymer support for the initial monolayer did not improve lipid asymmetry in the resulting bilayer. However, asymmetric LB/VF bilayers retained nearly 100% asymmetric label, with or without the use of a tethered polymer support. Finally, lipid mixing across the center of LB/LS bilayers was found to have drastic effects on the appearance of l(d)-l(o) phase coexistence as shown by epifluorescence microscopy.  相似文献   

5.
As a small tetrameric helical membrane protein, the M2 proton channel structure is highly sensitive to its environment. As a result, structural data from a lipid bilayer environment have proven to be essential for describing the conductance mechanism. While oriented sample solid-state NMR has provided a high-resolution backbone structure in lipid bilayers, quaternary packing of the helices and many of the side-chain conformations have been poorly restrained. Furthermore, the quaternary structural stability has remained a mystery. Here, the isotropic chemical shift data and interhelical cross peaks from magic angle spinning solid-state NMR of a liposomal preparation strongly support the quaternary structure of the transmembrane helical bundle as a dimer-of-dimers structure. The data also explain how the tetrameric stability is enhanced once two charges are absorbed by the His37 tetrad prior to activation of this proton channel. The combination of these two solid-state NMR techniques appears to be a powerful approach for characterizing helical membrane protein structure.  相似文献   

6.
A method is presented for the assembly of lipid bilayers on silica colloids via reconstitution of dried lipid films solvent-cast from chloroform within packed beds of colloids ranging from 100 nm to 10 μm in diameter. Rapid solvent evaporation from the packed bed void volume results in uniform distribution of dried lipid throughout the colloidal bed. Fluorescence measurements indicate that significant, if not quantitative, retention of DOPC or DPPC films cast between sub-bilayer and multilayer quantities occurs when the colloids are redispersed in aqueous solution. Phospholipid bilayers assembled in this manner are shown to effectively passivate the surface of 250 nm colloids to nonspecific adsorption of bovine serum albumin. The method is shown to be capable of preparing supported bilayers on colloid surfaces that do not generally support vesicle fusion such as poly(ethylene glycol) (PEG) modified silica colloids. Bilayers of lipids that have not been reported to self-assemble by vesicle fusion, including gel-phase lipids and single-chain diacetylene amphiphiles, can also be formed by this method. The utility of the solid-core support is demonstrated by the facile assembly of supported lipid bilayers within fused silica capillaries to generate materials that are potentially suitable for the analysis of membrane interactions in a microchannel format.  相似文献   

7.
Hollow polymer nanocapsules are produced by the polymerization within hydrophobic interior of lipid bilayers that act as temporary self-assembled scaffolds. Pore-forming templates are co-dissolved with monomers in the bilayers to create pores with controlled size and chemical environment. Polymerization was monitored with UV spectroscopy and dynamic light scattering. High resolution magic angle spinning NMR characterization provided detailed structural information about nanocapsules. Spherical shape was confirmed by electron microscopy. Medium-sized molecules can be entrapped within porous nanocapsules. No release of encapsulated molecules was observed within 240 days.  相似文献   

8.
Supported lipid membranes are particularly attractive for use in biochemical assays because of their resistance to nonspecific adsorption and their unique ability to host transmembrane proteins. Although ideal for use in many surface-based detection techniques, supported bilayers can make the incorporation of proteins problematic due to the steric constraints of the underlying substrate. A recently developed strategy overcomes this obstacle by tethering liposomes to supported lipid bilayers via cholesterol-tagged DNA. Due to the fluidity of the bilayer, the vesicle assemblies exhibited significant lateral mobility. The corresponding diffusion coefficients were then investigated using fluorescence recovery after photobleaching (FRAP). The diffusivity was neither sensitive to the size of the vesicles nor to the length of the DNA tether. However, changing from single cholesterol tethers to double cholesterol tethers caused a decrease in the diffusivity of the assemblies by a factor of 3. Perhaps even more notable was the fact that single cholesterol-DNA without vesicles diffused 6 times faster than the corresponding assemblies. Double cholesterol-DNA diffused 11 times faster. This discrepancy is believed to arise from the fact that each vesicle is tethered to the bilayer by multiple DNA pairs.  相似文献   

9.
The lateral diffusion coefficients of a BODIPY tail-labeled lipid in two model systems, namely, free-standing giant unilamellar vesicles (GUVs) and supported phospholipid bilayers (SPBs), were determined by fluorescence correlation spectroscopy (FCS) using the Z-scan approach. For the first time, the performed measurements on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers maintain exactly the same experimental conditions for both systems, which allows for a quantitative comparison of lipid diffusion in these two commonly used model membranes. The results obtained revealed that the lipid mobility in free-standing bilayers (D=7.8+/-0.8 microm2 s-1) is significantly higher than in the bilayer created on the solid support (mica) (D=3.1+/-0.3 microm2 s-1).  相似文献   

10.
We describe an electronic detection method for charged lipid bilayers supported on a Si 3N 4/SiO 2/Si substrate. The flat-band voltage was used to monitor the charge of the bilayers. We show that the flat-band voltage varies with lipid adsorption depending on the polarity and mole ratio of the charged lipids, the salt concentration, and the surface coverage. Cationic and anionic bilayers produced a decrease and an increase in the flat-band voltage, respectively. The voltage change increased as the percentage of charged lipid components was elevated in the planar bilayers with full surface coverage. In addition, the voltage variation increased when the salt concentration was decreased or when the surface coverage of planar bilayer patches was increased. These results demonstrate that charged bilayers can be detected from the field effect that they exert on a solid support.  相似文献   

11.
The study of lipid structure and phase behavior at the nanoscale is of utmost importance due to implications in understanding the role of the lipids in biochemical membrane processes. Supported lipid bilayers play a key role in understanding real biological systems, but they are vastly underrepresented in computational studies. In this paper, we discuss molecular dynamics simulations of supported lipid bilayers using a coarse-grained model. We first focus on the technical implications of modeling solid supports for biomembrane simulations. We then describe noticeable influences of the support on the systems. We are able to demonstrate that the bilayer system behavior changes when supported by a hydrophilic surface. We find that the thickness of the water layer between the support and the bilayer (the inner-water region in the latter part of this paper) adapts through water permeation on the microsecond time scale. Additionally, we discuss how different surface topologies affect the bilayer. Finally, we point out the differences between the two leaflets induced by the support.  相似文献   

12.
Supported lipid bilayers (SLBs) are popular models of cell membranes with potential bio-technological applications. A qualitative understanding of the process of SLB formation after exposure of small lipid vesicles to a hydrophilic support is now emerging. Recent studies have revealed a stunning variety of effects that can take place during this self-organization process. The ensemble of results in our group has revealed unprecedented insight into intermediates of the SLB-formation process and has helped to identify a number of parameters that are determinant for the lipid deposition on solid supports. The pathway of lipid deposition can be tuned by electrostatic interactions and by the presence of calcium. We emphasize the importance of the solid support in the SLB-formation process. Our results suggest that the molecular-level interaction between lipids and the solid support needs to be considered explicitly, to understand the rupture of vesicles and the formation of SLBs as well as to predict the properties of the resulting SLB. The impact of the SLB-formation process on the quality and the physical properties of the resulting SLB as well as implications for other types of surface-confined lipid bilayers are discussed.  相似文献   

13.
Skeletonized zirconium phosphonate surfaces are used to support planar lipid bilayers and are shown to be viable substrates for studying transmembrane proteins. The skeletonized surfaces provide space between the bilayer and the solid support to enable protein insertion and avoid denaturation. The skeletonized zirconium octadecylphosphonate surfaces were prepared using Langmuir-Blodgett techniques by mixing octadecanol with octadecylphosphonic acid. After zirconation of the transferred monolayer, rinsing the coating with organic solvent removes the octadecanol, leaving holes in the film ranging from ~50 to ~500 nm in diameter, depending on the octadecanol content. Upon subsequent deposition of a lipid bilayer, either by vesicle fusion or by Langmuir-Blodgett/Langmuir-Schaefer techniques, the lipid assemblies span the holes providing reservoirs beneath the bilayer. The viability of the supported bilayers as model membranes for transmembrane proteins was demonstrated by examining two approaches for incorporating the proteins. The BK channel protein inserts directly into a preformed bilayer on the skeletonized surface, in contrast to a bilayer on a nonskeletonized film, for which the protein associates only weakly. As a second approach, the integrin α(5)β(1) was reconstituted in lipid vesicles, and its inclusion in supported bilayers on the skeletonized surface was achieved by vesicle fusion. The integrin retains its ability to recognize the extracellular matrix protein fibronectin when supported on the skeletonized film, again in contrast to the response if the bilayer is supported on a nonskeletonized film.  相似文献   

14.
Inclusion of a polymer cushion between a lipid bilayer membrane and a solid surface has been suggested as a means to provide a soft, deformable layer that will allow for transmembrane protein insertion and mobility. In this study, mobile, tethered lipid bilayers were formed on a poly(ethylene glycol) (PEG) support via a two-step adsorption process. The PEG films were prepared by coadsorbing a heterofunctional, telechelic PEG lipopolymer (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-(pyridyldithio)propionate]) (DSPE-PEG-PDP) and a nonlipid functionalized PEG-PDP from an ethanol/water mixture, as described in a previous paper (Munro, J. C.; Frank, C. W. Langmuir 2004, 20, 3339-3349). Then a two-step lipid adsorption strategy was used. First, lipids were adsorbed onto the PEG support from a hexane solution. Second, vesicles were adsorbed and fused on the surface to create a bilayer in an aqueous environment. Fluorescence recovery after photobleaching experiments show that this process results in mobile bilayers with diffusion coefficients on the order of 2 microm2/s. The mobility of the bilayers is decreased slightly by increasing the density of tethered lipids. The formation of bilayers, and not multilayer structures, is also confirmed by surface plasmon resonance, which was used to determine in situ film thickness, and by fluorimetry, which was used to determine quantitatively the fluorescence intensity for each 18 by 18 mm sample. Unfortunately, fluorescence microscopy also shows that there are large defects on the samples, which limits the utility of this system.  相似文献   

15.
We recently introduced two approaches for tethering planar lipid bilayers as membrane patches to either a supported lipid bilayer or DNA-functionalized surface using DNA hybridization (Chung, M.; Lowe, R. D.; Chan, Y-H. M.; Ganesan, P. V.; Boxer, S. G. J. Struct. Biol.2009, 168, 190-9). When mobile DNA tethers are used, the tethered bilayer patches become unstable, while they are stable if the tethers are fixed on the surface. Because the mobile tethers between a patch and a supported lipid bilayer offer a particularly interesting architecture for studying the dynamics of membrane-membrane interactions, we have investigated the sources of instability, focusing on membrane composition. The most stable patches were made with a mixture of saturated lipids and cholesterol, suggesting an important role for membrane stiffness. Other factors such as the effect of tether length, lateral mobility, and patch membrane edge were also investigated. On the basis of these results, a model for the mechanism of patch destruction is developed.  相似文献   

16.
Planar solid supported single lipid bilayers on mica, glass, or other inorganic surfaces have been widely used as models for cell membranes. To more closely mimic the cell membrane environment, soft hydrophilic polymer cushions were introduced between the hard inorganic substrate and the lipid bilayer to completely avoid the possible substrate-lipid interactions. In this article, sum frequency generation (SFG) vibrational spectroscopy was used to examine and compare single lipid bilayers assembled on the CaF(2) prism surface and on poly (L-lactic acid) (PLLA) cushion. By using asymmetric lipid bilayers composed of a hydrogenated 1,2-dipalmitoyl-sn-glycerol-3-phosphoglycerol (DPPG) leaflet and a deuterated 1,2-dipalmitoyl-(d62)-sn-glycerol-3-phosphoglycerol (d-DPPG) leaflet, it was shown that the DPPG lipid bilayers deposited on the CaF(2) and PLLA surfaces have similar structures. SFG has also been applied to investigate molecular interactions between an antimicrobial peptide Cecropin P(1) (CP1) and the lipid bilayers on the above two different surfaces. Similar results were again obtained. This research demonstrated that the hydrophilic PLLA cushion can serve as an excellent substrate to support single lipid bilayers. We believe that it can be an important cell membrane model for future studies on transmembrane proteins, for which the possible inorganic substrate-bilayer interactions may affect the protein structure or function.  相似文献   

17.
The binding of amphiphilic molecules to lipid bilayers is followed by 19F NMR using chemical shift and line shape differences between the solution and membrane-tethered states of -CF 3 and -CHF 2 groups. A chemical shift separation of 1.6 ppm combined with a high natural abundance and high sensitivity of 19F nuclei offers an advantage of using 19F NMR spectroscopy as an efficient tool for rapid time-resolved screening of pharmaceuticals for membrane binding. We illustrate the approach with molecules containing both fluorinated tails and an acrylate moiety, resolving the signals of molecules in solution from those bound to synthetic dimyristoylphosphatidylcholine bilayers both with and without magic angle sample spinning. The potential in vitro and in vivo biomedical applications are outlined. The presented method is applicable with the conventional NMR equipment, magnetic fields of several Tesla, stationary samples, and natural abundance isotopes.  相似文献   

18.
We form planar lipid bilayers between an aqueous droplet and a hydrogel support immersed in a lipid-oil solution. By scanning the bilayer over the surface of an SDS-PAGE gel, we are able to directly detect membrane proteins from gels using single-channel recording. Using this technique, we are able to examine low levels of endogenous protein from cell extracts without the need for over-expression. We also use droplet bilayers to detect small molecules from hydrogels. The bilayers show enhanced stability compared to conventional planar lipid bilayers, and both bilayer size and position can be controlled during an experiment. Hydrogel scanning with droplet bilayers provides a new method for the discovery and characterization of ion channels with the potential for high-throughput screening.  相似文献   

19.
The two-dimensional (2D) center-of-mass diffusion, D, of end-tethered poly(2-methyl-2-oxazoline) (PMOx) lipopolymer chains was studied in a Langmuir monolayer at the air-water interface using wide-field single molecule fluorescence microscopy. In this case, tethering and stabilization of hydrophilic PMOx chains at the air-water interface is accomplished via end-tethering to lipid molecules forming a hydrophobic anchor. To explore the influence of molecular weight, M n, and surface concentration, c s, on lateral mobility, two different PMOx chain lengths of n = 30 and 50 ( n, number of monomer units) were analyzed over a wide range of c s. Using multiparticle tracking analysis of TRITC-labeled PMOx lipopolymers, we found two regimes of lipopolymer lateral mobility. At low c s, D is independent of surface concentration but increases with decreasing n. Here diffusion properties are well described by the Rouse model. In contrast, at more elevated c s, the data do not follow Rouse scaling but are in good agreement with a free area-area model of diffusion. The current study provides for the first time experimental insight into the 2D center-of-mass diffusion of end-tethered polymers at the air-water interface. The obtained results will be of importance for the understanding of diffusion processes in polymer-tethered phospholipid bilayers mimicking biomembranes at low and high tethering concentrations.  相似文献   

20.
We report a new system of laterally mobile, arrayed vesicles that are encoded with DNA to control tethering to fluid-supported phospholipid bilayers. The motion of individual fluorescently labeled vesicles, specifically bound, are easily visualized by fluorescence video microscopy and observed to collide reversibly on the surface. This system is an ideal model for studying interactions involving membranes, in particular integral membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号