首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe the synthesis and chemical characterization of three new Pd(II)–imidazoline complexes: [PdCl2 (C6H5–CH2–C3H5N2)2] (2), [PdCl(SEt2) (C6H4-C3H5N2)] (5) and [Pd(C6H4-C3H5N2) (μ-Br)]2 (6). We have also analyzed the DNA modifications and in vitro antileukaemic activity of these compounds and of their previously reported analogs [Pd Cl2 (C6H5–C3H5N2)2] (1), [Pd (C6H4–C3H5N2) (μ-OAc)]2 (3), [Pd (C6H4–C3H5N2) (μ-Cl)]2 (4) and [Pt(C6H4–C3H5N2)(μ-Cl] (7). All these compounds modify the DNA secondary structure since they alter the melting temperature (Tm) of the DNA. Circular dichroism spectra indicated, moreover, that compounds 3, 5 and 6 induced higher modification on the double helix than compounds 1, 2 and 4. While compounds 1, 2 and 5 seem to induce slight changes in the electrophoretic mobility of the open and covalently closed circular forms of pUC8 DNA at high ri (input molar ratio of Pd or Pt to nucleotides), compounds 3, 6 and 7 do not modify at any ri the tertiary structure of the plasmid DNA. Antileukaemic tests suggest that compounds 1, 4 and 7 exhibit important cytotoxic activity since their IC50 values against HL-60 human leukaemic cells were below 10 μg ml−1. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Complexes of Pd(II) with aminobutyric acid AmH = NH2CH(CH2CH3)COOH, namely, trans-[Pd(AmH)2Cl2] with monodentate (via the NH2 group) AmH ligands and cis-, trans-Pd(Am)2 with bidentate (via NH2 and COO groups) ligands have been synthesized for the first time. Elemental analysis and IR and NMR spectroscopy were used to identify the synthesized compounds. The NMR spectra of the Pd(II) complexes were interpreted by comparing them with the NMR spectra of the analogous complexes of Pt(II). For Pt(II) and Pd(II) complexes with aminobutyric acid used as examples, an approach to identification of diastereomer bis-aminoacid complexes in specimens with racemic aminoacids by NMR spectroscopy is demonstrated.  相似文献   

3.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex ? δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Knowledge of exactly how metal complexes react with molecular oxygen is still limited and this has hampered efforts to develop catalysts for oxidation reactions using O2 as the oxidant and/or oxygen‐atom source. A better understanding of the reactions of different types of metal complexes with O2 will be of great utility in rational catalyst development. Reactions between molecular oxygen and Pd0–II and Pt0–IV complexes are reviewed here.  相似文献   

5.
Novel [1,3-di-[N 1 -4-methoxy-1,2,5-thiadiazole-3-yl-sulfanilamide(sulfametrole)]-2″4-bis-[1,3-dithiole-2-thione-4,5-dithiolate]-2′,4′-dichl-orocyclodiphosph(V)azane] (III) , was prepared and their coordinating behavior towards the metal ions Co(II), Ni(II), Cu(II), and Pd(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV, 1 H, and 31 P NMR, ESR, magnetic susceptibility, molar ratio, conductometric titration and electrical conductivity measurements. The prepared complexes showed high to moderate bactericidal activity compared with the ligand.  相似文献   

6.
1,3,5-Triphenyl-1,3,5-diazaphosphorinanes form 21 complexes with Pt(II), Co(II), Ni(II), and Cu(I).31P NMR spectroscopy indicated that Pt, Co, and Ni are coordinated at the phosphorus atoms, while Cu(I) is coordinated at the nitrogen atoms.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 209–211, January, 1991.  相似文献   

7.
The thermal decompositions of the complexes of N,N-dialkyl-N'-benzoylthioureas with Cu(II), Ni(II), Pd(II), Pt(II), Cd(II), Ru(III) and Fe(III) were studied by TG and DTA techniques. These metal complexes decompose in two stages: elimination of dialkylbenzamide, and total decomposition to metal sulphides or metals. The influence of the alkyl substituents in these benzoylthiourea chelates on the thermal behaviour of the metal complexes was investigated.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
A series of metal complexes was synthesized using a simple thiourea derivative. The prepared complexes were characterized using different techniques (FTIR, ESR, X-ray diffraction [XRD], TG/DTA, and TEM). The FTIR spectrum of the ligand shows the presence of its tautomer forms (keto–enol). The ligand coordinates as a neutral bidentate in the Pt(IV), Pd(II), and Pt(II) complexes. In the case of Co(II) and Ni(II) complexes, the ligand is mono-negative bidentate. The proposed complexes are four to six coordinate. The geometries are proposed based on electronic spectral data and magnetic measurements and were verified using other tools. The XRD patterns reflect the nanocrystalline structures except for the Cu(II) complex, which is amorphous. The TEM images for platinum complexes show nanosize particles and homogeneous metal ion distribution on the complex surface. The EPR spectrum of Cu(II) complex verified the octahedral geometry of the complex. Molecular modeling was performed to assign the structural formula proposed for the ligand based on the characterization results.  相似文献   

9.
Two new sterically demanding diaminophosphinothiolate ligands (HL1 and HL2) have been prepared and the X-ray crystal structure of the Li salt of HL2 has been determined. The complex [Pd(L1)2] was fully characterized, but in contrast to other phosphinothiolates, complexes with the M(L)3 stoichiometry could not be prepared. Reaction of LH1 with Ni(II) led to cleavage of the arythiolate group and isolation of a thiolate bridged dimer, confirmed by an X-ray crystal structure. The Rh(I) complexes [Rh(nbd)L] (L = L1, L2) were characterized including an X-ray structure.  相似文献   

10.
1H, 13C and 15N nuclear magnetic resonance studies of gold(III), palladium(II) and platinum(II) chloride complexes with phenylpyridines (PPY: 4‐phenylpyridine, 4ppy; 3‐phenylpyridine, 3ppy; and 2‐phenylpyridine, 2ppy) having the general formulae [Au(PPY)Cl3], trans‐/cis‐[Pd(PPY)2Cl2] and trans‐/cis‐[Pt(PPY)2Cl2] were performed and the respective chemical shifts (δ, δ and δ) reported. 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: , , ) were discussed in relation to the type of the central atom (Au(III), Pd(II) and Pt(II)), geometry (trans‐/cis‐) and the position of a phenyl group in the pyridine ring system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The effects of four d8 transition-metal complexes from Group 10 on the thermal, mechanical, optical, and spectroscopic properties of atactic 1,2-polybutadiene are compared, in addition to their ability to induce gelation. Olefin coordination and subsequent metal-catalyzed chemical crosslinking occur much more quickly, and to a greater extent, at ambient temperature with PdCl2(CH3CN)2 than with PtCl2(C6H5CN)2. Alkene side groups in the polymer attack the pseudo-square-planar metal center (i.e., Pd2+ or Pt2+) from above or below the plane of the coordinatively unsaturated low-molecular-weight organometallic complex and displace neutral acetonitrile or benzonitrile ligands via an associative mechanism. Gelation occurs much more quickly with Pd2+ than with Pt2+, and the ambient-temperature elastic modulus of solid polybutadiene/palladium complexes increases significantly, without high-temperature annealing, so that a weak rubbery polymer is transformed into a glass via 3 mol % Pd2+. Alkene functional groups in the side chain of the polymer do not coordinate to bis(dimethyl)glyoximatonickel(II) at ambient temperature because (1) it is difficult to displace anionic dimethylgloxime ligands that are bidentate; (2) these planar nickel complexes with C2h symmetry are stacked along the c axis via interlocking methyl groups on adjacent molecules; and (3) there is a lack of π back-bonding between dxy on Ni(II) and empty π* antibonding orbitals of CC, which typically stabilizes olefin complexes with pseudo-square-planar d8 metal centers. Pseudo-octahedral nickel(II) chloride hexahydrate does not form a complex with the polymer, in agreement with some macroscopic properties of these materials. The observed trend in the transition-metal-modified properties of atactic 1,2-polybutadiene in the solid state and in the gel state is Pd(II) > Pt(II) ≫ Ni(II). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2270–2285, 2004  相似文献   

12.
N-(2-Hydroxybenzyl)aminopyridines (Li) react with Cu(II) and Pd(II) ions to form complexes in the compositions Cu(Li)2(CH3COO)2 · nH2O (n = 0, 2, 4), Pd(Li)2Cl2 · nC2H5OH (n = 0, 2) and Pd(L2)2Cl2 · 2H2O. In the complexes, the ligands are neutral and monodentate which coordinate through pyridinic nitrogen. Crystal data of the complexes obtained from 2-amino pyridine derivative have pointed such a coordinating route and comparison of the spectral data suggests the validity of similar complexation modes of other analog ligands. Cu(II) complex of N-(2-hydroxybenzyl)-2-aminopyridine (L1), [Cu(L1)2(CH3COO)2] has slightly distorted square planar cis-mononuclear structure which is built by two oxygen atoms of two monodentate carboxylic groups disposed in cis-position and two nitrogen atoms of two pyridine rings. The remaining two oxygen atoms of two carboxylic groups form two Cu and H bridges containing cycles which joint at same four coordinated copper(II) ion. IR and electronic spectral data and the magnetic moments as well as the thermogravimetric analyses also specify on mononuclear octahedric structure of complexes [Cu(L2)2(CH3COO)2 · 2H2O] and [Cu(L3)2(CH3COO)2 · 4H2O] where L2 and L3 are N-(2-hydroxybenzyl)-2- or 3-aminopyridines, respectively.  相似文献   

13.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A Pd(II)-linked coordination ring is reversibly transformed into its catenanted dimer at room temperature through the efficient organic stacking of the component rings. An analogous Pt(II)-linked ring is also catenated only at high temperature (100 °C), but not at room temperature because of the kinetic inertness of Pt(II)-ligand interaction. Interestingly, the combination of the Pd(II)- and the Pt(II)-linked coordination rings selectively gives a Pd(II)/Pt(II) cross-catenane, because the kinetically inert Pt(II) ring can be catenated only via the dissociation of the kinetically labile Pd(II) ring. Planer conformation of the monomer rings is twisted upon catenation, inducing helical chirality in the catenated structure. Thus, induced circular dichroism (ICD) is observed in the catenation when chiral-1,2-cyclohexandiamine is attached as a chiral auxiliary on the metal centers. The ICD decreases with increasing temperature due to less effective chiral aromatic stacking at higher temperature. The Pd(II) ring shows higher ICD than the Pt(II) ring, probably due to the more flexible conformation of the Pd(II) ring that can adopt chiral orientation easily. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3478–3485, 2003  相似文献   

15.
Reactions of phosphoramidites based on (−)-ephedrine and [(1S)-endo]-(−)-borneol with the complexes M(COD)Cl2 (M is Pd or Pt, and COD is cycloocta-1,5-diene) were studied. The formation ofcis andtrans complexes of the general formulas MCl2L2 and M2Cl2(μ-Cl)2L2 was observed. The structures of the resulting compounds were established by31P,13C, and195Pt NMR and IR spectroscopy and by plasma desorption mass spectrometry. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1627–1630, August, 1998.  相似文献   

16.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl3], trans‐[Pd(PIC)2Cl2], trans/cis‐[Pt(PIC)2Cl2] and [Pt(PIC)4]Cl2, were performed. After complexation, the 1H and 13C signals were shifted to higher frequency, whereas the 15N ones to lower (by ca 80–110 ppm), with respect to the free ligands. The 15N shielding phenomenon was enhanced in the series [Au(PIC)Cl3] < trans‐[Pd(PIC)2Cl2] < cis‐[Pt(PIC)2Cl2] < trans‐[Pt(PIC)2Cl2]; it increased following the Pd(II) → Pt(II) replacement, but decreased upon the transcis‐transition. Experimental 1H, 13C and 15N NMR chemical shifts were compared to those quantum‐chemically calculated by B3LYP/LanL2DZ + 6‐31G**//B3LYP/LanL2DZ + 6‐31G*. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The synthesis of M(PR3)2Cl2 (M = Pd and Pt, R = alkyl or aryl) front K2MCl4 (in H2O) and PR3 (in CH2Cl2) was promoted by the addition of phase-transfer catalysts (PTC). The greater the amount of PTC used, the more quickly the reaction completed. 31P NMR spectra of some M(PR3)2Cl2 in the presence of free PR3 were measured; these NMR resulls were used to explain problems encountered during the preparations.  相似文献   

18.
19.
The mononuclear palladium(II) (1) and platinum(II) (2) complexes containing phenylglycine have been synthesized and characterized by elemental analysis, IR spectra, and 1H NMR spectra. The structure of 1 was determined by X-ray diffractometry. The interaction between the complexes and fish sperm DNA (FS-DNA), adenosine-5′-triphosphate (ATP), and adenine (Ade) were investigated by UV absorption spectra, the interaction mode of the complex binding to DNA was studied by fluorescence spectra and viscometry. The results indicate that the two complexes have different binding affinities to DNA, complex 2 > complex 1. Gel electrophoresis assay demonstrates that the two complexes have the ability to cleave pBR322 plasmid DNA. Cytotoxicity experiments were carried out toward four different cancer cell lines, and 1 shows lower inhibitory efficiency than 2, consistent with the binding affinities towards DNA.  相似文献   

20.
(1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号