首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n(c) twice in a row than to generate a peak capacity n(c)(2) once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (alpha) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC(x)) and the chromatographic separations in time (LC(t)), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC(t)xLC(t), LC(x)xLC(t), LC(t)xLC(x), and LC(x)xLC(x). We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC(t)xLC(t)) are the most actively pursued. We suggest that the combination LC(x)xLC(t) shows exceptional promise because it permits the simultaneous second-dimension separations of all the fractions separated in the first-dimension, thus providing remarkable time saving.  相似文献   

2.
A method of countercurrent distribution described ten years ago has been improved to get better resolution. Retaining the principle of fast establishment of liquid-liquid equilibrium without emulgation, the rotating aggregate of separating chambers is not held horizontal, but inclined at an angle of 45°. The light mobile phase flows in every chamber as a thin layer over the heavy stationary phase. The separation of mixtures is analogous to that in a chromatographic column. The number of chambers can be easily increased to several hundred without complicating the handling of the apparatus. Another advantage consists in the complete absence of emulgations, even with systems or components that emulgate very easily. The apparatus can be operated under exclusion of oxygen.  相似文献   

3.
High efficiency separations (200 000 plates) were obtained on conventional LC equipment by coupling 8 x 25 cm x 2.1 (or 4.6) mm id x 5 microm d(p) ODS columns (total length 2 m) and operation at 60 degrees C using a dedicated LC oven. The peak capacity in this 1-D set-up was 900 for the separation of human serum tryptic peptides analyzed after depletion of six highly abundant proteins. The chromatographic performance of an elevated temperature-extended column length conventional LC is highlighted.  相似文献   

4.
Capillary Electrochromatography (CEC) offers a rapid, economical, and efficient means for resolving nonionic compounds in the reversed phase mode on octadecylsilane (ODS) columns. A CEC optimization on a Hypersil ODS capillary column was employed to identify a suitable mobile phase for the pressure-driven (reversed phase ODS) separation of the anti-inflammatory 2-phenylmethyl-1-naphthol (DUP 654), and its related substances. The proportions of mobile phase modifiers methanol, acetonitrile, and water as well as pH were employed as variables in a stacked mixture design. Comparable response surface profiles were obtained for the CEC separations at pH 4 and pH 8. However, subtle differences were evident in the quality of separations obtained in the liquid chromatographic (LC) mode when using a specially-prepared column packed with exactly the same stationary phase as used in the CEC experiments. A mapping of the response surface for separations on a commercially available Hypersil ODS LC column revealed obvious differences. The differences indicate that the transfer of ODS based separation methods between CEC and LC involves more than simply transferring the conditions from one mode to the other.  相似文献   

5.
A new type of capillary column for gas chromatography was proposed. A sorbent layer (for example, stationary liquid phase) is supported on the internal capillary surface, and the internal (interstitial) volume is packed with nonporous large particles of a sorbent (particle diameter is 0.1—0.6 of the capillary internal diameter). The external surface of the particles can also be coated with the sorbent layer (for example, stationary liquid phase). The specific separation efficiency (number of separation) on the new type column is by 1.6—2.3 times higher than that of the initial classical capillary column.  相似文献   

6.
In order to fully realize the separation power of comprehensive two-dimensional gas chromatography (GC x GC), a means of predicting and optimizing separations based on operating variables was developed. This approach initially calculates the enthalpy (DeltaH) and entropy (DeltaS) for the target compounds from experimental input data, and then uses this information to simultaneously optimize all column and runtime variables, including stationary phase composition, by comparing the performance of large numbers of simulated separations. This use of computer simulation has been shown to be a useful aid in conventional separations. It becomes almost essential for GC x GC optimization because of the large number of variables involved and their very complex interaction. Agreement between experimental and predicted values of standard test samples (Grob mix) using GC x GC separation shows that this approach is accurate. We believe that this success can be extended to more challenging mixtures resulting in optimizations that are simpler and transferable between GC x GC instruments.  相似文献   

7.
Fast liquid chromatographic (LC) methods are important for a variety of applications. Reducing the particle diameter (d(p)) is the most effective way to achieve fast separations while preserving high efficiency. Since the pressure drop along a packed column is inversely proportional to the square of the particle size, when columns packed with small particles (<2 microm) are used, ultrahigh pressures (>689 bar) must be applied to overcome the resistance to mobile phase flow. Elevating the column temperature can significantly reduce the mobile phase viscosity, allowing operation at higher flow rate for the same pressure. It also leads to a decrease in retention factor. The advantage of using elevated temperatures in LC is the ability to significantly shorten separation time with minimal loss in column efficiency. Therefore, combining elevated temperature with ultrahigh pressure facilitates fast and efficient separations. In this study, C6-modified 1.0 microm nonporous silica particles were used to demonstrate fast separations using a temperature of 80 degrees C and a pressure of 2413 bar. Selected separations were completed in 30 s with efficiencies as high as 220,000 plates m(-1).  相似文献   

8.
A method utilizing capillary-channeled polymer (C-CP) fibers as stationary phases in high-performance liquid chromatographic separations has been investigated. Polymeric fibers of differing backbones (polypropylene and polyester) having nominal diameters of approximately 50 and approximately 35 microm and a channeled structure on their periphery were packed into stainless steel tubing (305 x 4.6 mm I.D.) for use in reversed-phase separations of various mixtures. The fibers have eight channels running continuously along the axis which exhibit very high surface activity. As such, solvent transport is affected through the channels through wicking action. Bundles of 1000-3000 fibers are loaded co-linearly into the tubing, providing flow channels extending the entire length of the columns. As a result, backing pressures are significantly lowered (approximately 50% reduction) in comparison to packed-sphere columns. In addition, the capital costs of the fiber material (< US$0.25 per column) are very attractive. Flow-rates of up to 5 ml/min can be used to achieve near baseline separation of related compounds in reasonable run times, indicating very fast mobile phase mass transfer (C-terms). The polymer stationary phases demonstrate high selectivity for a wide variety of analytes with gradient elution employed successfully in many instances. Specifically, separations of three polyaromatic hydrocarbons (benzo[a]pyrene, chrysene, pyrene), mixtures of both organic and inorganic lead compounds [chlorotriethyllead, chlorotriphenyllead, lead nitrate, lead(II) phthalocyanine], and a lipid standard of triglycerides were accomplished on the polymeric stationary phases. Other species of biological interest, including groups of aliphatic and aromatic amino acids have also been effectively separated. The reversed-phase nature of the fiber surfaces is supported through atomic force microscopy measurements using hydrophilic and hydrophobic functionalized polystyrene beads as the probe tips. Separations of the various analytes demonstrate the feasibility of utilizing C-CP fibers as stationary phases in reversed-phase LC. It is envisioned that columns of this nature would be particularly useful in prep-scale separations as well as for immobilization matrices for organic constituents in aqueous environments.  相似文献   

9.
The overall peak capacity in comprehensive two-dimensional liquid chromatographic (LC x LC) separation can be considerably increased using efficient columns and carefully optimized mobile phases providing large differences in the retention mechanisms and separation selectivity between the first and the second dimension. Gradient-elution operation and fraction-transfer modulation by matching the retention and the elution strength of the mobile phases in the two dimensions are useful means to suppress the band broadening in the second dimension and to increase the number of sample compounds separated in LC x LC. Matching parallel gradients in the first and second dimension eliminate the necessity of second-dimension column re-equilibration after the independent gradient runs for each fraction, increase the use of the available second-dimension separation time and can significantly improve the regularity of the coverage of the available retention space in LC x LC separations, especially with the first- and second-dimension systems showing partial selectivity correlations. Systematic development of an LC x LC method with parallel two-dimensional gradients was applied for separation of phenolic acids and flavone compounds. Several types of bonded C18, amide, phenyl, pentafluorophenyl and poly(ethylene glycol) columns were compared using the linear free energy relationship method to find suitable column combination with low correlation of retention of representative standards. The phase systems were optimized step-by-step to find the mobile phases and gradients providing best separation selectivity for phenolic compounds. The optimization of simultaneous parallel gradients in the first and second dimension resulted in significant improvement in the utilization of the available two-dimensional retention space.  相似文献   

10.
The paper describes a new test designed in micellar LC (MLC) to compare the commercial C18 stationary phase properties. This test provides the total hydrophobicity, hydrophilicity, steric selectivity, hydrogen bonding, and ion‐exchange capacity properties calculation of the ODS stationary phases. Both the test compounds and chromatographic separation conditions choice for column characterization in MLC are detailed. The chromatographic performance of several stationary phases that are used in MLC was evaluated with specific chromatographic test comprising nine test compounds, possessing different physico‐chemical properties, which were injected on different supports with two micellar mobile phases: one at pH 7.0 (0.075 mol/L SDS and 1.5% v/v 1‐pentanol), and other at pH 2.7 (0.075 mol/L SDS and 1.5% v/v 1‐pentanol adjusted to pH by TFA). Fundamental column chromatographic properties were obtained under these conditions and were treated by hierarchical cluster analysis. From the results of cluster analysis, two closely related groups of columns are distinguished, and it was shown that the chosen column characteristic parameters allow characterizing both sorbent and micellar chromatographic system properties. Eleven columns were analyzed by this test, which allows a comparison of columns with the aim of the selection of suitable and analogous column for the analysis with MLC.  相似文献   

11.
In this study, the performance of monolithic columns was evaluated for ultrafast liquid chromatography/mass spectrometry (LC/MS) analyses and for high-resolution separations of several azaspiracid biotoxin analogs. Because of their high permeability, monolithic columns offer a number of advantages over conventional packed columns; viz., very low backpressures and relatively flat van Deemter curves at high flow rates. That is, very high flow rates can be used for ultrafast analyses or, by using longer than normal columns, high-resolution separations are possible. In a series of experiments, we varied the mobile phase flow rates between 1 and 8 mL/min, and studied their impact on chromatographic parameters such as retention time, resolution, number of plates and pressure. The chromatographic run times could be reduced to ca. 30 s without a significant change in the separation efficiency. A signal intensity comparison revealed interesting differences between atmospheric-pressure chemical ionization (APCI) and electrospray ionization (ESI) in their flow-rate dependency. An explanation with respect to the behavior as of a mass-flow or a concentration-dependent device is given in the paper. Additionally, the column length was varied between 10 and 70 cm. As a result, the number of theoretical plates increased substantially. In the example shown in the report, an increase from 13 000 plates for a 10-cm column to 80 000 for a 70-cm column is demonstrated. In addition, the potential of the monolithic columns for high-resolution LC/MS separations is shown for a complex biotoxin mixture, which was separated on a 40-cm-long column.  相似文献   

12.
A mixed-mode chromatographic (MMC) sorbent was prepared by functionalizing the silica sorbent with a pentafluorophenyl (PFP) ligand. The resulting stationary phase provided a reversed-phase (RP) retention mode along with a relatively mild strong cation-exchange (SCX) retention interaction. While the mechanism of interaction is not entirely clear, it is believed that the silanols in the vicinity of the perfluorinated ligand act as strongly acidic sites. The 2.1 mm x 150 mm column packed with such sorbent was applied to the separation of peptides. Linear RP gradients in combination with salt steps were used for pseudo two-dimensional (2D) separation and fractionation of tryptic peptides. An alternative approach of using linear cation-exchange gradients combined with RP step gradients was also investigated. Besides the attractive forces, the ionic repulsion contributed to the retention mechanism. The analytes with strong negatively charged sites (phosphorylated peptides, sialylated glycopeptides) eluted in significantly different patterns than generic tryptic peptides. This retention mechanism was employed for the isolation of phosphopeptides or sialylated glycopeptides from non-functionalized peptide mixtures. The mixed-mode column was utilized in conjunction with a phosphopeptide enrichment solid phase extraction (SPE) device packed with metal oxide affinity chromatography (MOAC) sorbent. The combination of MOAC and mixed-mode chromatography (MMC) provided for an enhanced extraction selectivity of phosphopeptides and sialylated glycopeptides peptides from complex samples, such as yeast and human serum tryptic digests.  相似文献   

13.
A simplified protein precipitation/mixed-mode cation-exchange solid-phase extraction (PPT/SPE) procedure has been investigated. A mixture of acetonitrile and methanol along with formic acid was used to precipitate plasma proteins prior to selectively extracting the basic drug. After vortexing and centrifugation, the supernatants were directly loaded onto an unconditioned Oasis MCX microElution 96-well extraction plate, where the protonated drug was retained on the negatively charged sorbent while interfering neutral lipids, steroids or other endogenous materials were washed away. Normal wash steps were deemed unnecessary and not used before sample elution. The sample extracts were analyzed under both conventional and high-speed liquid chromatography/tandem mass spectrometry (LC/MS/MS) conditions to examine the feasibility of the PPT/SPE procedure for human plasma sample clean-up. For the conventional LC/MS/MS method, chromatographic separation was achieved on a C18, 2.1 x 50 mm column with gradient elution (k' = 5.5). The mobile phase contained 0.1% formic acid in water and 0.1% formic acid in acetonitrile. For the high-speed LC/MS/MS method, chromatographic separation was achieved on a C18, 2.1 x 10 mm guard column with gradient elution (k' = 2.2, Rt = 0.26 min). The mobile phase contained 0.1% formic acid in water and 0.001% trifluoroacetic acid in acetonitrile. Detection for both conventional and high-speed LC/MS/MS methods was by positive ion electrospray tandem mass spectrometry on a ThermoElectron Finnigan TSQ Quantum Ultra, where enhanced resolution (RP 2000; 0.2 amu) was used for high-speed LC/MS/MS. The standard curve, ranging from 0.5 to 100 ng/mL, was fitted to a 1/x weighted quadratic regression model.This combined PPT/SPE procedure effectively eliminated time-consuming sorbent conditioning and wash steps, which are essential for a conventional mixed-mode SPE procedure, but retained the advantages of both PPT (removal of plasma proteins) and mixed-mode SPE (analyte selectivity). The validation results demonstrated that this PPT/SPE procedure was well suited for both conventional and high-speed LC/MS/MS analyses. In comparison with a conventional mixed-mode SPE procedure, the simplified PPT/SPE process provided comparable sample extract purity. This simple sample clean-up procedure can be applied to other basic compounds with minor modifications of PPT solvents.  相似文献   

14.
The effects of temperature and mobile phase on LC chromatographic separation of phenolic antioxidants on zirconia-based columns were investigated. Unlike silica-based materials, zirconia columns show excellent thermal stability over a wide range of temperatures and enable high-temperature separations. Enthalpic and entropic contributions to the retention of phenolic compounds on ZR-Carbon and ZR-Carbon C18 columns were determined from retention versus temperature plots in order to elucidate the retention mechanism of sample compounds over the temperature range up to 14 degrees C. High-temperature liquid chromatography on ZR-Carbon columns was used for comprehensive LC x LC two-dimensional separation systems based on the different selectivity of a Zorbax SB micro-column used in the first dimension and a ZR-Carbon column used in the second dimension. Two-dimensional LC x LC systems employing a setup with two alternately operated parallel ZR-Carbon columns in the second dimension were used for the analysis of phenolic antioxidants in beer and wine samples.  相似文献   

15.
Coupling normal-phase LC separation methods to atmospheric pressure ionization (API)-mass spectrometry (MS) for detection can be problematic because of the possible detonation hazard and because nonpolar solvents do not support ionization of the analyte. Unlike achiral separations, enantiomeric separations can be very sensitive to small changes in the separation environment. Thus, completely substituting the main mobile phase component of a normal-phase LC solvent for an environmentally friendly, nonflammable fluorocarbon-ether as a safe and effective solvent must be thoroughly evaluated before it can be recommended for enantioselective separations with API-MS detection. Ethoxynonafluorobutane (ENFB) was used as a normal-phase solvent for the enantioselective separation of 15 compounds on two macrocyclic glycopeptide chiral stationary phases (CSPs) and a new polymeric chiral stationary phase. The chromatographic figures of merit were compared between results obtained with the ENFB mobile phases and traditional heptane-based mobile phases. In addition, the limits of detection (LOD) using the API-MS compatible ENFB were examined, as well as flow rate sensitivities and compatibilities with common polar organic modifier. ENFB is a safe and effective solvent for enantioselective normal-phase/API-MS analyses.  相似文献   

16.
Enantioseparation of limonene‐based bicyclic 1,3‐aminoalcohols and 1,3,5‐ and 1,3,6‐aminodiols was performed by normal‐phase high‐performance liquid chromatographic and supercritical fluid chromatographic (SFC) methods on polysaccharide‐based chiral stationary phases. The effects of the composition of the mobile phase, the column temperature and the structures of the analytes and chiral selectors on retention and selectivity were investigated by normal‐phase LC and SFC technique. Thermodynamic parameters derived from selectivity–temperature‐dependence studies were found to be dependent on the chromatographic method applied, the nature of the chiral selector and the structural details of the analytes. Enantiorecognition in most cases was enthalpically driven but an unusual temperature behavior was also observed: decreased retention times were accompanied by improved separation factors with increasing temperature, i.e. some entropically driven separations were also observed. The elution sequence was determined in all cases. The separation of the stereoisomers was optimized in both chromatographic modalities.  相似文献   

17.
The use of shear forces for the generation of the mobile phase flow in chromatographic separations is proposed. This novel chromatographic operating principle, referred to as shear-driven chromatography (SDC), completely circumvents the pressure-drop limitation of conventional pressure-driven GC and LC without affecting the operational flexibility (choice of mobile and stationary phases, possibility of solvent and/or temperature programming, etc.). In the present paper, the expression for the height equivalent to a theoretical plate in SDC in a channel with a flat rectangular cross-section is established and is used to demonstrate the large gain in analysis speed under LC, GC and supercritical fluid chromatography conditions.  相似文献   

18.
Summary Retention behaviours of aromatic hydrocarbons were examined by using the vapour of an organic substance as the mobile phase and silica gel as the stationary phase. Gas chromatographic separation of aromatic hydrocarbons was demonstrated by using a system comprising a liquid chromatographic (LC) pump, a micropacked column for LC, a column oven and a UV detector.  相似文献   

19.
全二维气相色谱技术及其进展   总被引:37,自引:2,他引:35  
许国旺  叶芬  孔宏伟  路鑫  赵欣捷 《色谱》2001,19(2):132-136
 许多分析问题的解决需要得到比一维色谱技术能提供的更高的分辨率。分离能力可通过使用多种分离技术或机理的组合来增强。此时 ,样品被分散在不同的时间维 ,最终的分辨率强烈地依赖于这些维间分离特性的差异。当它们之间没有关联 ,也即相互间正交时 ,系统可获得最高的分辨率。全二维气相色谱 (GC×GC)提供了一个真正的正交分离系统。它把分离机理不同而又互相独立的两支色谱柱以串联方式结合组成二维气相色谱。在这两支色谱柱之间装有的一个调制器起捕集再传送的作用。全二维色谱的峰容量为组成它的两支色谱柱各自峰容量的乘积。  相似文献   

20.
The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous,organic and mixed mobile phases.The separation of one ion from several other ions and also ternary and binary separations have been developed.Some important analytical separations are reported.The effect of pH of the mobile phase on retention factor(Rf)values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied.This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationary phase in thin layer chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号