首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We reported sulfonated poly(ether ether ketone) (SPEEK, 61% degree of sulfonation)–metal oxides (MO2:SiO2, TiO2 and ZrO2)–polyaniline composite membranes. Metal oxides were incorporated into the swelled SPEEK membrane by sol–gel method and cured by thermal treatment. SPEEK–metal oxide membranes surfaces were modified with polyaniline (PANI) by a redox polymerization process. It was observed that water retention capacity of membrane was increased and methanol permeability was reduced due to synergetic effect of metal oxides and surface modification with polyaniline. These composite membranes showed extremely low methanol permeability (1.9–1.3 × 10−7 cm2 s−1), which was lower than till reported values either for SPEEK–metal oxide or SPEEK/PANI membranes. Relatively high selectivity parameter (SP) values at 343 K of these membranes, especially S–SiO2–PANI and S–TiO2–PANI, indicated their great advantages over Nafion117 (N117) membrane for targeting on moderate temperature applications due to the synergetic effect of MO2 and PANI in SPEEK matrix. S–TiO2–PANI and N117 showed comparable cell performance in direct methanol fuel cell (DMFC).  相似文献   

2.
CdS nanocrystals (NCs) usually exhibit very weak electrochemiluminescence (ECL) emission. It is showed that when CdS NCs were treated by heating in the presence of ammonia (heated-CdS–NH3), greatly enhanced ECL was observed. The ECL of the heated-CdS–NH3 modified glassy carbon electrode (heated-CdS–NH3/GCE) in phosphate buffer solution (pH 7.0) containing 0.1 M K2S2O8 was ca. 310 times higher than that of CdS/GCE. The treatment caused the changes in the morphology and surface electronic structure of CdS NCs, which facilitated the reduction process of CdS, consequently improved the quantity of the excited states (CdS*), leading to enormous enhancement in ECL.  相似文献   

3.
A novel bi-functional sensor, based on CdS nanocrystals (NCs) and hemoglobin (Hb) multilayer films, designated as {Hb/CdS}n, modified glassy carbon electrode (GCE) by layer-by-layer (LbL) assembly, has been presented. The electrogenerated chemiluminescence (ECL) and electrochemical properties of {Hb/CdS}n have been investigated in detail. Hb in the multilayer films can enhance the stability of electrogenerated species of CdS NCs, and CdS NCs can also promote the direct electron transfer between Hb and GCE. As a consequence experimentally, the multilayer films modified GCE is suitable to be used as a bi-functional sensor, ECL sensor and electrochemical sensor, to determine H2O2 in obviously different concentration. In high concentration of H2O2, this sensor as an ECL sensor shows a linear response from 15 μM up to 18 mM. In the lower concentration of H2O2, it as an amperometric one shows two linear ranges of amperometric responses to the concentration of H2O2 ranging from 6.0 to 31.0 μM and from 6.0 μM down to 40 nM with a detection limit of 20 nM, based on the high stability of ECL by {Hb/CdS}n and the excellent electrocatalytical ability of Hb to H2O2. Thus, {CdS/Hb}n modified electrodes would have a great merit to expand the application of biosensors to life science and environmental science.  相似文献   

4.
Effective enhancement of electrochemiluminescence (ECL) of peroxydisulfate on a C60/didodecyldimethyl ammonium bromide (C60/DDAB) film coated glassy carbon electrode (GCE) surface is reported in this paper. The C60/DDAB film gave lower cathodic current in the presence of peroxydisulfate than that from a bare GCE. To our surprise, electrochemiluminescent intensity from peroxydisulfate reduction was effectively enhanced on the C60/DDAB film, which was 50 times and 250 times higher than those from a DDAB film coated and bare GCE, respectively. Moreover, the ECL onset potential on the C60/DDAB film was about −0.9 V, which positively shifted 200 mV compared with that from the bare GCE. Dissolved oxygen and the applied potential also affected the electrochemiluminescent intensity. The presence of oxygen decreased the intensity, and the intensity reached maximum at the applied potential of −1.7 V. The unique property will greatly enrich ECL studies and applications based on fullerenes.  相似文献   

5.
The electrochemical and electrogenerated chemiluminescence (ECL) properties of indium tin oxide (ITO) electrodes modified with poly(4-vinylpyridine) (PVP)-bound Ru(bpy)2Cl+ (where bpy = 2,2′-bipyridine) have been studied. In a sodium oxalate solution, two irreversible oxidation waves as well as two ECL emission waves were observed during the potential scan in the range 0.4-1.4 V (versus Ag/AgCl/saturated KCl reference). The first ECL wave appeared at ca. 0.8 V, which was caused by the excited-state Ru2+* generated through a bimolecular redox reaction between electrogenerated Ru3+ and the strong reducing agent, CO2. The latter was formed via a Ru3+-mediated oxidation of oxalate. Direct oxidation of oxalate was not involved in the first ECL process. The second ECL wave started at ca. 1.1 V, which was also from the excited-state Ru2+* generated via the redox reaction between Ru3+ and CO2. However, both direct and Ru3+-mediated oxidation of oxalate contributed to the formation of CO2. The important role of the direct oxidation of oxalate in the ECL mechanism of PVP-bound Ru(bpy)2Cl+/oxalate system was demonstrated. The relative contribution of direct oxidation of oxalate to the observed ECL depended upon the surface concentration of PVP-bound Ru2+, the concentration of oxalate and the electrode potential applied.  相似文献   

6.
Xiong C  He M  Hu B 《Talanta》2008,76(4):772-779
A new, simple, and selective method has been presented for the separation and preconcentration of inorganic arsenic (As(III)/As(V)) and selenium (Se(IV)/Se(VI)) species by a microcolumn on-line coupled with inductively coupled plasma-optical emission spectrometry (ICP-OES). Trace amounts of As(V) and Se(VI) species were separated and preconcentrated from total As and Se at desired pH values by a conical microcolumn packed with cetyltrimethylammonium bromide (CTAB)-modified alkyl silica sorbent in the absence of chelating reagent. The species adsorbed by CTAB-modified alkyl silica sorbent were quantitatively desorbed with 0.10 ml of 1.0 mol l−1 HNO3. Total inorganic arsenic and selenium were similarly extracted after oxidation of As(III) and Se(IV) to As(V) and Se(VI) with KMnO4 (50.0 μmol l−1). The assay of As(III) and Se(IV) were based on subtracting As(V) and Se(VI) from total As and total Se, respectively. All parameters affecting the separation/preconcentration of As(V) and Se(VI) including pH, sample flow rate and volume, eluent solution and volume have been studied. With a sample volume of 3.0 ml, the sample throughput was 24 h−1 and the enrichment factors for As(V) and Se(VI) were 26.7 and 27.6, respectively. The limits of detection (LODs) were 0.15 μg l−1 for As(V) and 0.10 μg l−1 for Se(VI). The relative standard deviations (RSDs) for nine replicate determinations at 5.0 μg l−1 level of As(V) and Se(VI) were 4.0% and 3.6%, respectively. The calibration graphs of the method for As(V) and Se(VI) were linear in the range of 0.5–1000.0 μg l−1 with a correlation coefficient of 0.9936 and 0.9992, respectively. The developed method was successfully applied to the speciation analysis of inorganic arsenic and selenium in natural water samples with satisfactory results.  相似文献   

7.
In this communication, an amperometric glucose biosensor based on MnO2/MWNTs electrode was reported. MnO2 was homogeneously coated on vertically aligned MWNTs by electrodeposition. The MnO2/MWNTs electrode displayed high electrocatalytic activity towards the oxidation of glucose in alkaline solution, showing about 0.30 V negative shift in peak potential with oxidation starting at ca. −0.20 V (vs. 3 M KCl–Ag/AgCl) as compared with bare MWNTs electrode. At an applied potential of +0.30 V, the MnO2/MWNTs electrode gives a linear dependence (R = 0.995) in the glucose concentration up to 28 mM with a sensitivity of 33.19 μA mM−1. Meanwhile, the MnO2/MWNTs electrode is also highly resistant toward poisoning by chloride ions. In addition, interference from the oxidation of common interfering species such as ascorbic acid, dopamine, and uric acid is effectively avoided. The MnO2/MWNTs electrode allows highly sensitive, low-potential, stable, and fast amperometric sensing of glucose, which is promising for the development of nonenzymatic glucose sensor.  相似文献   

8.
High-quality poly(fluorene-9-acetic acid) (PFAA), a new soluble polyfluorene derivative, was synthesized electrochemically by direct anodic oxidation of fluorene-9-acetic acid (FAA) in boron trifluoride diethyl etherate (BFEE) containing a certain amount of trifluoroacetic acid (TFA). This electrolyte enables facile anodic oxidation of FAA monomer at lower potential (1.05 V vs. SCE). PFAA films with conductivity of 0.53 S cm−1 obtained from this medium showed better redox activity and thermal stability in relation to unsoluble poly(fluorene-9-carboxylic acid). Fluorescent spectral studies indicate that PFAA film with high fluorescence quantum yields and photochemical stability is a good blue-light emitter. The structure and morphology of the polymer were studied by UV–vis, FT-IR, 1H NMR spectra and scanning electron microscopy, respectively.  相似文献   

9.
We report that glass–ceramic Li2S–P2S5 electrolytes can be prepared by a single step ball milling (SSBM) process. Mechanical ball milling of the xLi2S·(100 − x)P2S5 system at 55 °C produced crystalline glass–ceramic materials exhibiting high Li-ion conductivity over 10−3 S cm−1 at room temperature with a wide electrochemical stability window of 5 V. Silicon nanoparticles were evaluated as anode material in a solid-state Li battery employing the glass–ceramic electrolyte produced by the SSBM process and showed outstanding cycling stability.  相似文献   

10.
A novel chemically modified electrode is prepared on the basis of the attachment of multiwall carbon nanotubes (MWNTs) to the surface of a glassy carbon electrode (GCE) in the presence of a hydrophobic surfactant. The electrochemical behavior of tannins at the MWNTs-modified GCE is investigated. Tannins yield a well-defined oxidation at about 0.30 V (SCE) at the MWNTs-modified GCE. MWNT-film shows remarkable enhancement effect on the oxidation peak current of tannins. The experimental parameters are optimized, and a direct electrochemical method to detect tannins is proposed. The oxidation peak current is proportional to the concentration of tannins over the range from 4 × 10–7 to 2 × 10–4 M, and the detection limit is 1 × 10–7 mol/l after 5 min of accumulation. The relative standard deviation of 6% for determination of 2 × 10–6 mol/l tannins indicates excellent reproducibility. The analysis method is demonstrated by using tea and Chinese gall samples.  相似文献   

11.
TiO2 nanocrystals had been modified on the surface of the glassy carbon electrode (GCE) with the help of Nafion. The electrochemiluminescence (ECL) behavior of the TiO2/Nafion GCE in aqueous solution was investigated. A possible mechanism about the ECL of TiO2 had also been proposed. The ECL intensity was linear with the dissolved oxygen concentration in the range of 0.30–10.00 mg/L with a detection limit of 0.12 mg/L. The developed method can be applied to detect the dissolved oxygen concentration or biochemical oxygen demand (BOD).  相似文献   

12.
The electrochemical behavior of electrochemical deposition of Au nanoparticles onto a glassy carbon electrode (GCE) and its application for the electrocatalytic electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ in an aqueous solution without coreaction are investigated in this report. The modification of GCE by Au nanoparticles results in excellent catalysis of the ECL of Ru(bpy)32+. The effects of various factors, such as potential scan range, the presence of nitrogen and oxygen, and the scan rate on Ru(bpy)32+. ECL peaks, were systematically studied. This article has provided insight into the design of an Au-nanoparticle-modified electrode for ECL, analytical and catalytic applications. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 9, pp. 1127–1132. The text was submitted by the authors in English.  相似文献   

13.
A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.  相似文献   

14.
Parallel pathways forming CO2 and acetic acid occur during the electrooxidation of acetaldehyde at Pt in acid medium. The yields of products depend on potential and acetaldehyde concentration. In the whole range of concentrations investigated (2.5 × 10−3 – 0.5 M) and at potentials below 0.6 V, CO2 is the only product of acetaldehyde oxidation. Acetic acid is detected at potentials higher than 0.7 V. According to the analysis of products using FTIR spectroscopy, a maximum yield of CO2 production is obtained for an acetaldehyde concentration of 0.01 M at 0.6 V. The pathway forming CO2 is strongly inhibited for 0.5 M of acetaldehyde. It is suggested that, at high concentrations, a competition with water for active sites occurs, which inhibits the oxidation of adsorbed species, which probably follow a Langmuir–Hinshelwood mechanism.  相似文献   

15.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

16.
An electrochemical method has been established for the determination of lovastatin (LV). It is based on the enhanced oxidation of lovastatin at a novel acetylene black–dihexadecyl hydrogen phosphate composite-modified glassy-carbon electrode (AB–DHP/GCE) in the presence of Triton X-100. This electrode was prepared by dispersion of acetylene black particles in an aqueous suspension of DHP and the formation of a stable film of the resulting AB–DHP composite on the surface of a glassy carbon electrode (GCE). As a result of modification of the AB–DHP composite, the electrochemical response of lovastatin at GCE was apparently enhanced; this was apparent as amplification of the oxidation current and the negative shift of the oxidation potential. The oxidation current can be further increased in the presence of a trace amount of Triton X-100. The enhanced oxidation of lovastatin at AB–DHP/GCE was due to enlargement of the effective electrode area, catalysis of lovastatin oxidation by AB, and accumulation of lovastatin at the hydrophobic surface of the DHP layer, which would be enhanced by the coherence with Triton X-100. The effects of some working conditions on the oxidation current of lovastatin were tested and the calibration plot was examined. The result showed that the oxidation current was a linear function of lovastatin concentration in the range 2.5×10–8–1.0×10–6 mol L–1 and a low detection limit of 4.0×10–9 mol L–1 was obtained under optimum conditions. This electrode system was applied to the determination of lovastatin in dosage drug forms and the results were in accordance with the ultraviolet–visible spectroscopy method.  相似文献   

17.
We studied the electrochemical properties of gold nanoparticles (GNPs) and their complexes with proteins using square-wave voltammetry. Effect of the nanoparticle size and detection procedure was explored upon the oxidation of GNPs on a glassy carbon electrode (GCE). For pre-characterized GNPs of 13, 35 and 78 nm diameter, the oxidation peak potential was + 0.98, + 1.03 and + 1.06 V vs. Ag/AgCl, respectively. The conjugation of GNPs with four different proteins was verified by UV–Vis spectroscopy and atomic force microscopy indicated the formation of protein shells around GNPs. This process hampered the oxidation of GNPs on bare GCE causing pronounced decrease in the current response by an average factor of 72. GCE modification with carbon nanotubes weakly influenced the sensitivity of GNP detection but resulted in a 14.5-fold signal increase averaged for all GNP–protein complexes. The acidic dissolution and electrodeposition of GNPs or their complexes adsorbed on GCE allowed superior signal amplification directly proportional to nanoparticle size. The results are useful for the optimization of voltammetric analysis of GNP–protein complexes and can be extended to the characterization of other metal nanostructures and their complexes with biological components.  相似文献   

18.
Boron-doped diamond hollow fiber membrane (BDD–HFM) was fabricated as a novel type of porous conductive diamond. BDD–HFM was obtained by deposition of BDD polycrystalline film onto a quartz filter substrate consisting of quartz fibers, followed by etching of the substrate in HF/HNO3 aqueous solution. Cross-sectional scanning electron microscope (SEM) observation showed the inner diameter and wall thickness of the BDD hollow fibers were in the range of 0.4–2 and 0.2–2 μm, respectively. The BDD–HFM electrode exhibited a relatively large double-layer capacitance (ca. 13 F g−1) in 0.1 M H2SO4. Electrochemical AC impedance properties were simulated using an equivalent circuit model containing a transmission line model, which indicated characteristics of a porous electrode material.  相似文献   

19.
In this paper, we described a simple and rapid method, capillary electrophoresis with electrochemiluminescence (CE–ECL) detection using tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+), to simultaneously detect pethidine and methadone. Analytes were injected to separation capillary of 67.5 cm length (25 μm i.d., 360 μm o.d.) by electrokinetic injection for 10 s at 10 kV. Under the optimized conditions: ECL detection at 1.20 V, 30 mM sodium phosphate (pH 6.0) as running buffer, separation voltage at 14.0 kV, 5 mM Ru(bpy)32+ with 50 mM sodium phosphate (pH 6.5) in the detection cell, the linear range from 2.0 × 10− 6 to 2.0 × 10− 5 M for pethidine and 5.0 × 10− 6 to 2.0 × 10− 4 M for methadone and detection limits of 0.5 μM for both of them were achieved (S/N = 3). Relative standard derivations of the ECL intensity were 2.09% and 6.59% for pethidine and methadone, respectively.  相似文献   

20.
Díaz TG  Cabanillas AG  Soto MD  Ortiz JM 《Talanta》2008,76(4):809-814
Square-wave adsorptive-stripping voltammetry technique has been used to develop a method for the determination of fenthion in olive oil. Due to the fact that fenthion does not give any electrochemical signal at mercury electrode, the method has been based on a previous oxidation of fenthion to its metabolite, fenthion-sulfoxide, by using KMnO4. The metabolite gives rise to a peak due to an adsorptive-reductive process at −0.786 V. Fenthion is isolated from olive oil by carrying out a solid–liquid extraction procedure using silica cartridge, followed by a liquid–liquid partitioning with acetonitrile. The detection limit in olive oil is 78.8 ng g−1 and recoveries for four levels of fortification are ranged from 85% to 109%. On the other hand, it has been developed a method for the simultaneous determination of fenthion and its metabolite fenthion-sulfoxide, in river water. Pesticides are isolated from water by carrying out a liquid–liquid partitioning with trichloromethane. The detection limits are 0.41 ng g−1 and 0.44 ng g−1, for fenthion and fenthion-sulfoxide, respectively. Recoveries for three levels of fortification are ranged from 96% to 103% for fenthion and 94% to 104% for fenthion-sulfoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号