首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
We investigate a system consisting of two like-charged infinitely long rods and neutralizing counterions at low temperatures, using both analytic theory and simulations. With some reasonable approximations we can analytically solve for several ground-state structures of the model, starting with states where all counterions are lined up in the gap between the rods, over planar configurations, where the counterions are divided up into a fraction which resides between the rods, and counterions which are located on the outer surfaces, up to configurations which cover the full rod surfaces. Using parallel tempering simulations, we are able to study the system over a wide range of temperatures. At low temperatures we find good agreement with our T = 0 results. At higher temperatures, the strong coupling (SC) theory delivers qualitatively better results. We furthermore demonstrate that for the SC theory and our ground-state approximations to yield quantitative agreement, three parameters are required to be large, the strong-coupling parameter Ξ, the Rouzina-Bloomfield parameter, and the ratio of the average distance of the counterions to the radius of the rods. In the case of the latter ratio being small, our T = 0 results show better agreement with the simulation data at very low temperatures.  相似文献   

2.
We report a mechanism which can lead to long-range attractions between like-charged spherical macroions, stemming from the existence of metastable ionized states. We show that the ground state of a single highly charged colloid plus a few excess counterions is overcharged. For the case of two highly charged macroions in their neutralizing divalent counterion solution we demonstrate that, in the regime of strong Coulomb coupling, the counterion clouds are very likely to be unevenly distributed, leading to one overcharged and one undercharged macroion. This long-living metastable configuration in turn leads to a long-range Coulomb attraction.  相似文献   

3.
We study the strong-coupling (SC) interaction between two like-charged membranes of finite thickness embedded in a medium of higher dielectric constant. A generalized SC theory is applied along with extensive Monte Carlo simulations to study the image charge effects induced by multiple dielectric discontinuities in this system. These effects lead to strong counterion crowding in the central region of the intersurface space upon increasing the solvent-membrane dielectric mismatch and change the membrane interactions from attractive to repulsive at small separations. These features agree quantitatively with the SC theory at elevated couplings or dielectric mismatch where the correlation hole around counterions is larger than the thickness of the central counterion layer.  相似文献   

4.
We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation.  相似文献   

5.
We reconsider the electrostatic contribution to the persistence length, , of a single, infinitely long-charged polymer in the presence of screening. A Gaussian variational method is employed, taking as the only variational parameter. For weakly charged and flexible chains, crumpling occurs at small length scales because conformational fluctuations overcome electrostatic repulsion. The electrostatic persistence length depends on the square of the screening length, , as first argued by Khokhlov and Khachaturian by applying the Odijk-Skolnick-Fixman (OSF) theory to a string of crumpled blobs. We compare our approach to previous theoretical works (including variational formulations) and show that the result found by several authors comes from the improper use of a cutoff at small length scales. For highly charged and stiff chains, crumpling does not occur; here we recover the OSF result and validate the perturbative calculation for slightly bent rods.PACS: 36.20.-r Macromolecules and polymer molecules - 82.70.-y Disperse systems; complex fluids - 87.15.-v Biomolecules: structure and physical properties  相似文献   

6.
There is abundant experimental evidence suggesting the existence of attractive interactions among identically charged polyelectrolytes in ordinary salt solutions. The presence of multivalent counterions is not required. We review the relevant literature in detail and conclude that it merits more attention than it has received. We discuss also some recent observations of a low ionic strength attraction of negatively charged DNA to the region of a negatively charged glass nanoslit where the floor of the nanoslit meets the walls, again in the absence of multivalent ions. On the theoretical side, it has become clear that purely electrostatic interactions require the presence of multivalent counterions if they are to generate like-charge attraction. Any theory of like-charge attraction in the absence of multivalent counterions must therefore contain a non-electrostatic component. We point out that counterion condensation theory, which has predicted like-charge polyelectrolyte attraction in an intermediate range of distances in ordinary 1:1 salt conditions, contains both electrostatic and non-electrostatic elements. The non-electrostatic component of the theory is the modeling constraint that the counterions fall into two explicit populations, condensed and uncondensed. As reviewed in the paper, this physically motivated constraint is supported by strong experimental evidence. We proceed to offer an explanation of the nanoslit observations by showing in an idealized model that the line of intersection of two intersecting planes is a virtual polyelectrolyte. Since we have previously developed a counterion condensation theory of attraction of two like-charged polyelectrolytes, our suggestion is that the DNA is attracted to the virtual polyelectrolytes that may be located in the nanoslit where floor meets walls. We present the detailed calculations needed to document this suggestion: an extension of previous theory to the case of polyelectrolytes with like but not identical charges; the demonstration of counterion condensation on a plane with bare charge density greater than an explicitly exhibited critical value; a calculation of the free energy of the plane; a calculation of the interaction of a line charge polyelectrolyte with a like-charged plane; and the detailed demonstration that the line of intersection of two planes is a virtual polyelectrolyte.  相似文献   

7.
In a charged colloidal system, the influence on depletion interaction between two like-charged macro-ions is studied through Monte Carlo simulation in this paper. The numerical results show that this depletion force is affected by both the electrostatic interactions between charged spheres and charged plates and by the geometrical factor of the two charged plates, and they further indicate that the influence of geometrical confinement on the depletion interaction is larger than that of electrostatic potential.  相似文献   

8.
We seek to elucidate the dominant mechanism of attractive interaction between like-charged biopolymers by measuring the temperature dependence of the critical divalent counterion concentration (Cc) for the aggregation of fd viruses. A decrease in either temperature or the dieletric constant alone causes a decrease in Cc, providing evidence for the Wigner crystal model. Surprisingly, the effects of these two parameters can be combined so that Cc is expressed as a function of a single parameter: the Bjerrum length. Cc decreases exponentially as the Bjerrum length increases, suggesting that an energetic balance between the entropic effect of counterions and the counterion mediated attractive interaction gives rise to the onset of bundle formation.  相似文献   

9.
Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attractions depend upon concentrations of simple and multivalent salts. We find that with increasing multivalent salt, the stable configuration of two rods evolves from isolated rods to aggregated perpendicular rods to aggregated parallel rods; at sufficiently high concentration, additional multivalent salt reduces the attraction. Monovalent salt enhances the attraction near the onset of aggregation and reduces it at a higher concentration of multivalent salt.  相似文献   

10.
Electrostatic interaction between two charged conducting spheres is analyzed in the case of a small spacing between them, when the polarization effects are significant. It is shown that short-range polarization forces result in the attraction of the like-charged spheres. At a sufficiently small spacing, this attraction replaces repulsive forces acting on like charges.  相似文献   

11.
Attractions between like-charged polyelectrolytes have been observed in a variety of systems (W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, September issue, 38 (2000)). Recent biological examples include DNA, filamentous viruses, and F-actin. Theoretical investigations on idealized systems indicate that counterion correlations play a central role, but no experiments that specifically probe such correlations have been performed. Using synchrotron X-ray diffraction, we have directly observed the organization of multivalent ions on cytoskeletal filamentous actin (a well-defined biological polyelectrolyte) and found an unanticipated symmetry-breaking collective counterion mechanism for generating attractions. Surprisingly, the counterions do not form a lattice that simply follows actins helical symmetry; rather, the counterions organize into frozen ripples parallel to the actin filaments and form structures reminiscent of charge density waves. Moreover, these 1D counterion charge density waves form a coupled mode with twist deformations of the oppositely charged actin filaments. This counterion organization is not sensitive to thermal fluctuations in temperature range accessible to protein-based polyelectrolyte systems. Moreover, the counterion density waves are pinned to the spatial periodicity of charges on the actin filament even if the global filament charge density is varied, indicating the importance of charge periodicity on the polyelectrolyte substrate.  相似文献   

12.
Similarly and highly charged plates in the presence of multivalent counterions attract each other and form electrostatically bound states. Using Monte-Carlo simulations, we obtain the interplate pressure in the global parameter space. The equilibrium plate separation, where the pressure changes from attractive to repulsive, exhibits a novel unbinding transition. A systematic and asymptotically exact strong-coupling field theory yields the bound state from a competition between counterion entropy and electrostatic attraction, in agreement with simple scaling arguments and simulations.  相似文献   

13.
The effective interaction between charged colloidal particles confined between two planar like-charged walls is investigated using computer simulations of the primitive model describing asymmetric electrolytes. In detail, we calculate the effective force acting onto a single macroion and onto a macroion pair in the presence of slitlike confinement. For moderate Coulomb coupling, we find that this force is repulsive. Under strong-coupling conditions, however, the sign of the force depends on the distance to the plates and on the interparticle distance. In particular, the particle-plate interaction becomes strongly attractive for small distances which may explain the occurrence of colloidal crystalline layers near the plates observed in recent experiments.  相似文献   

14.
The counterion distribution within a spherical polyelectrolyte sparse brush was measured by small-angle X-ray scattering using contrast variation with different counterions by means of ion dialysis. The brush was made by self-association of charged diblock copolymers. Thanks to the contrast variation method, we were able to separate the signal due to the monomers and the signal due to the counterions. At a small length scale, it is demonstrated that the system behaves as independent charged rods whose counterion distribution follows the Poisson-Boltzmann model. Received 14 February 2001 and Received in final form 2 May 2001  相似文献   

15.
This Letter describes dynamic self-assembly in a system of stainless steel spheres ( approximately 1 mm in diameter) rolling on a flat dielectric surface under the influence of an external magnetic field that rotates parallel to the plane of the surface. As the spheres move, they charge triboelectrically. Self-assembly is mediated by two types of electrostatic interactions among these charges: (i) attraction between negatively charged regions of the surface and positively charged spheres and (ii) repulsion between the like-charged spheres. The spheres organize into highly ordered rings as a result of these electrostatic interactions.  相似文献   

16.
Membranes containing highly charged biomolecules can have a minimal free-energy state at small separations that originates in the strongly correlated electrostatic interactions mediated by counterions. This phenomenon can lead to a condensed, lamellar phase of charged membranes that coexists in thermodynamic equilibrium with a very dilute membrane phase. Although the dilute phase is mostly water, entropy dictates that this phase must contain some membranes and counterions. Thus, electrostatics alone can give rise to the coexistence of a condensed and an unbound lamellar phase. We use numerical simulations to predict the nature of this coexistence when the charge density of the membrane is large, for the case of multivalent counterions and for a membrane charge that is characteristic of biomolecules. We also investigate the effects of counterion size and salt on the two coexisting phases. With increasing salt concentration, we predict that electrostatic screening by salt can destroy the phase separation.  相似文献   

17.
The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalent counterions can cause DNA reentrant condensation similar to that caused by tri- or tetravalent counterions. DNA-DNA interaction is strongly repulsive at small or large counterion concentration and is negligible or slightly attractive for a concentration in between. Implications of our results to experiments of DNA ejection from bacteriophages are discussed. The quantitative result serves to understand electrostatic effects in other experiments involving DNA and divalent counterions.  相似文献   

18.
We study the thermodynamic properties of a simple model for the possible mechanism of attraction between like charged rod-like polyions inside a polyelectrolyte solution. We consider two polyions in parallel planes, with Z charges each, in a solution containing multivalent counterion of valence . The model is solved exactly for Z13 for a general angle between the rods and supposing that n counterions are condensed onto each polyion. The free energy has two minima, one at =0 (parallel rods) and another at =/2 (perpendicular rods). The stability of the parallel and perpendicular configurations is analyzed.  相似文献   

19.
A theory is presented which allows us to accurately calculate the density profile of monovalent and multivalent counterions in suspensions of polarizable colloids or nanoparticles. In the case of monovalent ions, we derive a weak-coupling theory that explicitly accounts for the ion-image interaction, leading to a modified Poisson-Boltzmann equation. For suspensions with multivalent counterions, a strong-coupling theory is used to calculate the density profile near the colloidal surface and a Poisson-Boltzmann equation with a renormalized boundary condition to account for the counterion distribution in the far field. All the results are compared with the Monte?Carlo simulations, showing an excellent agreement between the theory and the simulations.  相似文献   

20.
Using Monte Carlo simulations, we study the counterion distribution close to planar charged walls in two geometries: i) when only one charged wall is present and the counterions are confined to one half-space, and ii) when the counterions are confined between two equally charged walls. In both cases the surface charge is smeared out and the dielectric constant is the same everywhere. We obtain the counterion density profile and compare it with both the Poisson-Boltzmann theory (asymptotically exact in the limit of weak coupling, i.e. low surface charge, high temperature and low counterion valence) and the strong-coupling theory (valid in the opposite limit of high surface charge, low temperature and high counterion valence) and with previously calculated correction terms to both theories for different values of the coupling parameter, thereby establishing the domain of validity of the asymptotic limits. Gaussian corrections to the leading Poisson-Boltzmann behavior (obtained via a systematic loop expansion) in general perform quite poorly: At coupling strengths low enough so that the Gaussian (or one-loop) correction does describe the numerical deviations from the Poisson-Boltzmann result correctly, the leading Poisson-Boltzmann term by itself matches the data within high accuracy. This reflects the slow convergence of the loop expansion. For a single charged plane, the counterion pair correlation function indicates a behavioral change from a three-dimensional, weakly correlated counterion distribution (at low coupling) to a two-dimensional, strongly correlated counterion distribution (at high coupling), which is paralleled by the specific-heat capacity which displays a rounded hump at intermediate coupling strengths. For the case of counterions confined between two equally charged walls, we analyze the inter-wall pressure and establish the complete phase diagram, featuring attraction between the walls for large enough coupling strength and at intermediate wall separation. Depending on the thermodynamic ensemble, the phase diagram exhibits a discontinuous transition where the inter-wall distance jumps to infinity (in the absence of a chemical potential coupling to the inter-wall distance, as for charged lamellae in excess solvent) or a critical point where two coexisting states with different inter-wall distance become indistinguishable (in the presence of a chemical potential, as for charged lamellae with a finite fixed solvent fraction). The attractive pressure decays with the inter-wall distance as an inverse cube, similar to analytic predictions, although the amplitude differs by an order of magnitude from previous theoretical results. Finally, we discuss in detail our simulation methods and compare the finite-size scaling behavior of different boundary conditions (periodic, minimal image and open). Received 6 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号