首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We extend equivariant dimensional reduction techniques to the case of quantum spaces which are the product of a K?hler manifold M with the quantum two-sphere. We work out the reduction of bundles which are equivariant under the natural action of the quantum group SU q (2), and also of invariant gauge connections on these bundles. The reduction of Yang–Mills gauge theory on the product space leads to a q-deformation of the usual quiver gauge theories on M. We formulate generalized instanton equations on the quantum space and show that they correspond to q-deformations of the usual holomorphic quiver chain vortex equations on M. We study some topological stability conditions for the existence of solutions to these equations, and demonstrate that the corresponding vacuum moduli spaces are generally better behaved than their undeformed counterparts, but much more constrained by the q-deformation. We work out several explicit examples, including new examples of non-abelian vortices on Riemann surfaces, and q-deformations of instantons whose moduli spaces admit the standard hyper-K?hler quotient construction.  相似文献   

2.
We study the possibility of defining the (braided) comultiplication for the GL q (N)-covariant differential complexes on some quantum spaces. We discover suchdifferential bialgebras (and Hopf algebras) on the bosonic and fermionic quantum hyperplanes (with additive coproduct) and on the braided matrix algebra BM q (N) with both multiplicative and additive coproducts. The latter case is related (forN = 2) to theq-Minkowski space andq-Poincaré algebra.  相似文献   

3.
Associated to the standard SU q (n) R-matrices, we introduce quantum spheresS q 2n-1 , projective quantum spaces q n-1 , and quantum Grassmann manifoldsG k( q n ). These algebras are shown to be homogeneous spaces of standard quantum groups and are also quantum principle bundles in the sense of T. Brzeziski and S. Majid.  相似文献   

4.
Attention is focused on antisymmetrized versions of quantum spaces that are of particular importance in physics, i.e. two-dimensional quantum plane, q-deformed Euclidean space in three or four dimensions as well as q-deformed Minkowski space. For each case standard techniques for dealing with q-deformed Grassmann variables are developed. Formulae for multiplying supernumbers are given. The actions of symmetry generators and fermionic derivatives upon antisymmetrized quantum spaces are calculated. The complete Hopf structure for all types of quantum space generators is written down. From the formulae for the coproduct a realization of the L-matrices in terms of symmetry generators can be read off. The L-matrices together with the action of symmetry generators determine how quantum spaces of different type have to be fused together. Arrival of the final proofs: 6 December 2005  相似文献   

5.
Inhomogeneous quantum groups corresponding to the homogeneous quantum groupsU q (N), SO q (N) and theq-deformed Lorentz group acting on affine quantum spaces are constructed.  相似文献   

6.
A generalized transformation theory is introduced by using quantum (non-commutative) spaces transformed by quantum Lie groups (Hopf algebras). In our method dual pairs of -quantum groups/algebras (co)act on quantum spaces equipped with the structure of a -comodule algebra. We use the quantized groupSU q (2) as a show case, and we determine its action on modules such as theq-oscillator and the quantum sphere. We also apply our method for the quantized Euclidean groupF q (E(2)) acting on a quantum homogeneous space. For the sphere case the construction leads to an analytic pseudodifferential vector field realization of the deformed algebra su q (2) on the quantum projective plane for north and south pole.Presented by A.A. at the 5th International Colloquium on Quantum Groups: Quantum Groups and Integrable Systems, Prague, 20–20 June 1996 and by D.E. at the 4th International Congress of Geometry, Thessaloniki.  相似文献   

7.
The bicovariant differential calculus on quantum groups being defined by Woronowicz and later worked out explicitly by Carow-Watamura et at. and Juro for the real quantum groupsSU q (N) andSO q (N) through a systematic construction of the bicovariant bimodules of these quantum groups is reviewed forSU q (2) andSO q (N). The resulting vector fields build representations of the quantized universal enveloping algebras acting as covariant differential operators on the quantum groups and their associated quantum spaces. As an application a free particle stationary wave equation on quantum space is formulated and solved in terms of a complete set of energy eigenfunctions.Presented at the Colloquium on the Quantum Groups, Prague, 18–20 June 1992.  相似文献   

8.
We investigate the structure of the tensor product representation of the quantum groupSL q (2,C) by using the 2-dimensional quantum plane as a building block. Two types of 4-dimensional spaces are constructed applying the methods used in twistor theory. We show that the 4-dimensional real representation ofSL q (2,C) generates a consistent non-commutative algebra, and thus it provides a quantum deformation of Minkowski space. The transformation of this 4-dimensional space gives the quantum Lorentz groupSO q(3, 1).  相似文献   

9.
We investigate quantum deformation of conformal algebras by constructing the quantum space forsl q (4). The differential calculus on the quantum space and the action of the quantum generators are studied. We derive deformedsu(2,2) algebra from the deformedsl(4) algebra using the quantum 4-spinor and its conjugate spinor. The quantum 6-vector inso q (4,2) is constructed as a tensor product of two sets of 4-spinors. We obtain theq-deformed conformal algebra with the suitable assignment of the generators which satisfy the reality condition. The deformed Poincaré algebra is derived through a contraction procedure.Work partially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (#030083)  相似文献   

10.
Inhomogeneous quantum groups corresponding to the homogeneous quantum groupsU q (N), SO q (N) and theq-deformed Lorentz group acting on affine quantum spaces are constructed. Special representations of the translation part are investigated.Presented at the Colloquium on the Quantum Groups, Prague, 18–20 June, 1992.  相似文献   

11.
The Dirac q-monopole connection is used to compute projector matrices of quantum Hopf line bundles for arbitrary winding number. The Chern–Connes pairing of cyclic cohomology and K-theory is computed for the winding number −1. The non-triviality of this pairing is used to conclude that the quantum principal Hopf fibration is non-cleft. Among general results, we provide a left-right symmetric characterization of the canonical strong connections on quantum principal homogeneous spaces with an injective antipode. We also provide for arbitrary strong connections on algebraic quantum principal bundles (Hopf–Galois extensions) their associated covariant derivatives on projective modules. Received: Received: 4 September 1998 / Accepted: 16 October 1998  相似文献   

12.
The big q-Jacobi polynomials and the q-Hahn polynomials are realized as spherical functions on a new quantum SU q (2)-space which can be regarded as the total space of a family of quantum 3-spheres.  相似文献   

13.
In this article we present explicit formulae for q-differentiation on quantum spaces which could be of particular importance in physics, i.e., q-deformed Minkowski space and q-deformed Euclidean space in three or four dimensions. The calculations are based on the covariant differential calculus of these quantum spaces. Furthermore, our formulae can be regarded as a generalization of Jacksons q-derivative to three and four dimensions.Received: 26 September 2002, Revised: 18 June 2003, Published online: 2 October 2003  相似文献   

14.
After a preliminary review of the definition and the general properties of the homogeneous spaces of quantum groups, the quantum hyperboloidqH and the quantum planeqP are determined as homogeneous spaces ofF q (E(2)). The canonical action ofE q (2) is used to define a naturalq-analog of the free Schrödinger equation, that is studied in the momentum and angular momentum bases. In the first case the eigenfunctions are factorized in terms of products of twoq-exponentials. In the second case we determine the eigenstates of the unitary representation, which, in theqP case, are given in terms of Hahn-Exton functions. Introducing the universalT-matrix forE q (2) we prove that the Hahn-Exton as well as Jacksonq-Bessel functions are also obtained as matrix elements ofT, thus giving the correct extension to quantum groups of well known methods in harmonic analysis.  相似文献   

15.
We define a quantum generalization of the algebra of functions over an associated vector bundle of a principal bundle. Here the role of a quantum principal bundle is played by a Hopf-Galois extension. Smash products of an algebra times a Hopf algebra H are particular instances of these extensions, and in these cases we are able to define a differential calculus over their associated vector bundles without requiring the use of a (bicovariant) differential structure over H. Moreover, if H is coquasitriangular, it coacts naturally on the associated bundle, and the differential structure is covariant.We apply this construction to the case of the finite quotient of the SL q(2) function Hopf algebra at a root of unity (q 3 = 1) as the structure group, and a reduced 2-dimensional quantum plane as both the base manifold and fibre, getting an algebra which generalizes the notion of classical phase space for this quantum space. We also build explicitly a differential complex for this phase space algebra, and find that levels 0 and 2 support a (co)representation of the quantum symplectic group. On this phase space we define vector fields, and with the help of the Sp q structure we introduce a symplectic form relating 1-forms to vector fields. This leads naturally to the introduction of Poisson brackets, a necessary step to do classical mechanics on a quantum space, the quantum plane.  相似文献   

16.
It is shown that the principle of locality and noncommutative geometry can be connected by a sheaf theoretical method. In this framework quantum spaces are introduced and examples in mathematical physics are given. Within the language of quantum spaces noncommutative principal and vector bundles are defined and their properties are studied. Important constructions in the classical theory of principal fibre bundles like associated bundles and differential calculi are carried over to the quantum case. At the endq-deformed instanton models are introduced for every integral index.  相似文献   

17.
We obtain the quantum group SL q (2) as semi-infinite cohomology of the Virasoro algebra with values in a tensor product of two braided vertex operator algebras with complementary central charges c+[`(c)]=26{c+\bar{c}=26}. Each braided VOA is constructed from the free Fock space realization of the Virasoro algebra with an additional q-deformed harmonic oscillator degree of freedom. The braided VOA structure arises from the theory of local systems over configuration spaces and it yields an associative algebra structure on the cohomology. We explicitly provide the four cohomology classes that serve as the generators of SL q (2) and verify their relations. We also discuss the possible extensions of our construction and its connection to the Liouville model and minimal string theory.  相似文献   

18.
Two hierarchies of quantum principal bundles over quantum real projective spaces are constructed. One hierarchy contains bundles with U(1)U(1) as a structure group, the other has the quantum group SUq(2)SUq(2) as a fibre. Both hierarchies are obtained by the process of prolongation from bundles with the cyclic group of order 2 as a fibre. The triviality or otherwise of these bundles is determined by using a general criterion for a prolongation of a comodule algebra to be a cleft Hopf–Galois extension.  相似文献   

19.
Quantum matrices in two dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GLp,q(2) and a 1-parametric family GL inf sup J(2). Phenomena previously found for GLp,q(2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra.  相似文献   

20.
The FRT quantum Euclidean spaces O q N are formulated in terms of Cartesian generators. The quantum analogs of N-dimensional Cayley-Klein spaces are obtained by contractions and analytical continuations. Noncommutative constant-curvature spaces are introduced as spheres in the quantum Cayley-Klein spaces. For N = 5 part of them is interpreted as the noncommutative analogs of (1+3) space-time models. As a result the quantum (anti) de Sitter, Minkowski, Newton, Galilei kinematics with the fundamental length and the fundamental time are suggested. Presented at the International Colloquium “Integrable Systems and Quantum Symmetries”, Prague, 16–18 June 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号