首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

Understanding the self-assembly of nanoscale metal—ligand clusters is an important research area in supramolecular chemistry, especially, if one wishes to develop a truly predictive design strategy for synthesizing these nanoscale clusters. As the building blocks for forming these clusters have become larger and more complex, spacious clusters have been synthesized which often contain large cavities. These assemblies can house guest molecules which play a previously uncharacterized role in the self-assembly processes. We seek to analyze this role: do these guest molecules act as templates? Are the guest molecules necessary for cluster formation? Does the guest drive cluster assemble by forming a stable host—guest complex with the cluster? Must a truly rational design strategy for forming metal—ligand clusters incorporate the use of templates? The role of guest molecules in the self-assembly of nanoscale coordination clusters is reviewed in this article.  相似文献   

2.
Broadband, time-resolved optical waveguide (OWG) spectroscopy has been used for in situ, real-time investigation into the self-assembly of metal nanoparticle monolayers. The OWG spectroscopy makes it possible to use the transverse electric (TE) and transverse magnetic (TM) modes to measure surface plasmon absorption of immobilized metal nanoparticles in two directions, parallel and normal to the waveguide surface. Therefore, this technique can provide direction-dependent information on the metal nanoparticles at the interface. In this paper, a 50-microm-thick glass plate was used as a slab waveguide and the kinetics of Au nanoparticle adsorption on a hemoglobin-functionalized glass substrate was examined in the early stage of self-assembly. The findings show that with the TE mode the surface plasmon resonance (SPR) behavior for immobilized Au nanoparticles is different from that with the TM mode.  相似文献   

3.
A study is presented of the stabilization of gold and palladium nanoparticles (NPs) via a place-exchange reaction. Au and Pd NPs of approximately 3.5 nm were prepared by a conventional method using tetraoctylammonium bromide (TOAB) as the stabilizing agent. The resulting nanoparticles, referred to as Au-TOAB or Pd-TOAB, were later used as templates for the replacement of TOAB ligand with poly(ethylene oxide)- b-polystyrene- b-poly(4-vinylpyridine) (PEO- b-PS- b-P4VP) triblock copolymer. This biamphiphilic triblock copolymer was synthesized by atom transfer radical polymerization (ATRP) with control over the molecular weight and polydispersity. The place-exchange reaction was mediated through strong coordination forces between the 4-vinylpyridine copolymer and the metal species located on the surface of the nanoparticles. In addition, the displacement of the outgoing low molecular weight TOAB ligands by high molecular weight polymers is an entropy-assisted process and is believed to contribute to stabilization. The prepared complex, polymer-NP, exhibits greatly improved stability over the metal-NP complex in common organic solvents for the triblock copolymer. Self-assembly in water after ligand exchange resulted in micellar structures of about approximately 20 nm (electron microscopy) with the metal NP found located on the surface of the micelles. The stability of the nanoparticles in water was shown to depend greatly on the grafting density of the copolymer, with high stability (more than 6 months) at high grafting density and low stability, accompanied with irreversible agglomeration, at relatively low grafting densities. The surprising location of the metal NP (for both Au and Pd) on the surface of the micelles in water is explained by the fact that, upon self-assembly in THF/water system, the most hydrophobic chains (i.e., PS) undergo self-assembly first at low water content forming the core, followed by the P4VP (whether or not associated with the metal) forming a shell, and finally the PEO forming the corona. In lower metal content assemblies, the P4VP chains located in the shell undergo swelling in an acidic medium causing a substantial increase in micellar corona size, as confirmed by dynamic light scattering measurements. The present study offers a simple approach for the stabilization of various metal nanoparticles of catalytic interest, using a unique polymeric support that can be dispersed in organic solvents as well as aqueous solutions.  相似文献   

4.
We report the biomacromolecular self-assembly of histidine acid phosphatase (HAP), an enzyme of significant biomedical and industrial importance, in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]). The spontaneous self-assembly of HAP enzyme in [BMIM][BF(4)] results in the formation of HAP nanocapsules. The HAP enzyme molecules were found to retain their enzymatic activity after the self-assembly process, which enabled us to utilize self-assembled HAP capsules as self-catalyzing templates for the synthesis of a range of hollow metal nanoparticles (Au, Ag, Pd, and Ni) without employing any additional reducing agent. The hollow metal nanospheres with HAP encapsulated within their cavity were found to retain enzymatic activity for at least up to four cycles, as demonstrated in the case of Au-coated HAP capsules as the model system.  相似文献   

5.
Mesoporous films containing organic or biological functions within an organised array of cavities are produced by combining sol-gel, self-assembly of supramolecular templates and surface chemistry. This paper reviews the essential physics and chemical concepts behind the synthesis of these complex multifunctional materials.  相似文献   

6.
This paper describes the self-assembly of small objects--polyhedral metal plates with largest dimensions of 10 to 30 microm--into highly ordered, three-dimensional arrays. The plates were fabricated using photolithography and electrodeposition techniques, and the faces of the plates were functionalized to be hydrophobic or hydrophilic using self-assembled monolayers (SAMs). Self-assembly occurs in water through capillary interactions between thin films of a hydrophobic liquid (a liquid prepolymer adhesive) coated onto the hydrophobic faces of the plates; coalescence of the adhesive films reduces the interfacial free energy of the system and drives self-assembly. By altering the size and surface-patterning of the plates, the external morphologies of the aggregates were varied. Curing the adhesive furnished mechanically stable aggregates that were characterized by scanning electron microscopy (SEM). For assemblies formed by plates partially composed of a sacrificial material, a subsequent etching step furnished fully open, three-dimensional microstructures. This work validates the use of capillary interactions for three-dimensional mesoscale self-assembly in the 10-microm-size regime and opens new avenues for the fabrication of complex, three-dimensional microscructures.  相似文献   

7.
Directing the self-assembly of organic building blocks with 2D templates has been a promising method to create molecular superstructures having unique physicochemical properties. In this work the on-surface self-assembly of simple ditopic functional molecules confined inside periodic nanotemplates was modeled by means of the lattice Monte Carlo simulation method. Two types of confinement, that is honeycomb porous networks and parallel grooves of controlled diameter and width were used in the calculations. Additionally, the effect of (pro)chirality of the adsorbing molecules on the outcome of the templated self-assembly was examined. To that end, enantiopure and racemic assemblies were studied and the resulting structures were identified and classified. The obtained findings demonstrated that suitable tuning of the structural parameters of the templates enables directing the self-assembly towards linear and cyclic aggregates with controlled size. Moreover, chiral resolution of the molecular conformers using honeycomb networks with adjusted pore size was found possible. Our theoretical predictions can be helpful in designing structured surfaces to direct self-assembly and polymerization of organic functional building blocks.  相似文献   

8.
环糊精及其衍生物具有“内疏水、外亲水”的特殊分子结构,可与许多客体分子包结形成包合物。利用环糊精与聚合物的包结作用构建稳定、结构可控并具有广泛应用前景的生物医用材料是材料及医学界研究的焦点之一。本文介绍了环糊精基(准)聚轮烷的概念及其组装驱动力,同时围绕由环糊精和聚合物组装形成的(准)聚轮烷在生物医用方面的研究包括药物载体(如超分子凝胶、超分子胶束、超分子纳米囊泡、药物键合(准)聚轮烷、刺激响应型(准)聚轮烷等)、基因载体、多重识别与靶向、形状记忆材料及其它相关领域工作进展作一概述。  相似文献   

9.
The structures of the mixed Langmuir-Blodgett (LB) films of conventional amphiphiles (CAs) and amphiphilic silane-coupling agents (SCAs) were investigated using IR spectroscopy, atomic force microscopy, and friction force microscopy. By using CAs having hydrogenated alkyl chains and SCAs having perfluorinated alkyl chains, phase-separated structures were formed with domains consisting of CAs surrounded by SCAs. The size and shape of the domains depended strongly on the mixed components, the mixing ratios, and the subphase temperature. In particular, usage of a CA having hydrogenated and perfluorinated portions in the hydrophobic group as one of the components led to the formation of nanothreads. When the phase-separated mixed LB films were heated, SCAs formed covalent bonds with the substrates having silanol groups whereas CAs did not have such ability. Rinsing the heat-treated LB films with ethanol selectively removed CAs with the SCA regions intact, resulting in the fabrication of templates. The structures of the templates reflected those of the original phase-separated LB films. LB transfer of amphiphiles on the templates led to the confinement of the amphiphiles in regions with the size and shape delineated by the templates. These results demonstrate that a variety of amphiphiles can be confined two-dimensionally in a designed manner.  相似文献   

10.
We report a versatile method to confine metal thin films in micro- and nanopatterns using directed self-assembly on the templates fabricated from phase-separated mixed Langmuir-Blodgett (LB) films. The pattern of the mixed LB films can be tuned by adjusting intermolecular interaction between the film-forming molecules in the LB films and by varying the fabrication conditions of the films such as the mixing ratio, subphase temperature, and surface pressure. We use the patterned LB films for templates to confine metal in patterned regions, taking advantage of the difference between the surface free energy of the patterned regions and that of the self-assembled monolayer of the silane coupling agent. Au nanoparticles are confined onto the patterned films as a catalyst for the succeeding Cu electroless deposition. The atomic force microscopic images, Auger electron spectra, and scanning Auger electron maps of a Cu-deposited film show that Cu is selectively deposited on the patterns of phase separation of the original mixed LB films.  相似文献   

11.
In this review, we overview metal oxide nanostructures in which organic molecules play important roles as templates, as structural units, and, in some cases, as hosts. Their structural precision and diversity are discussed from the viewpoint of the topology of a metal-oxygen network. Supramolecular capsules of metal oxides are prepared by the self-assembly of polyoxometalates. Zeolites and mesoporous materials are synthesized by using organic molecules with their assemblies acting as templates. The topological networking of silsesquioxanes makes it possible to produce novel nanocomposites and microporous materials. In the final section, we demonstrate our recent studies into molecular imprinting, the encapsulation of a fluorescent dye, and the wrapping of individual polymer chains. Ultrathin, amorphous metal oxide films can retain the shape of organic molecules and can be used to create molecular composites by precisely wrapping individual molecules. These films are also effective in insulating molecular functions from external environments. The advantages of amorphous metal oxides are discussed in relation to the properties of the corresponding crystalline metal oxides and their potential prospects in nanotechnology.  相似文献   

12.
Yang J  Jia L  Yin L  Yu J  Shi Z  Fang Q  Cao A 《Macromolecular bioscience》2004,4(12):1092-1104
The chemical preparation of structurally well-defined biodegradable amphiphilic block copolymers is now of great interest for biomedical applications and the fundamental mimetic study of biomacromolecule self-assembly. For this purpose, in this study, (R,R)-N,N'-bis(3-tert-butylsalicylidene)-1,2-cyclohexanediamine 2 as a ligand was first synthesized from 1,2-cyclohexanediamine (DACH) and was allowed to further react with AlMe3, leading to a precursor compound 3. Then, the novel five-coordinated aluminum metal complexes 4-6 and 7-8 were prepared with good yields of 80-90%, bearing various molar mass monofunctional methoxy-poly(ethylene glycol) MPEG and difunctional poly(ethylene glycol) PEG as the alkoxy moieties, respectively. By means of nuclear magnetic resonance spectrometry (NMR), mass spectrometry (MALDI-FTMS) and Fourier Transform infrared spectrometry (FT-IR), new metal aluminum complexes 4-8 were characterized as having distinct chemical structures. Utilizing the synthesized metal complexes 4-8 as novel coordination polymerization catalytic templates, biodegradable amphiphilic MPEG-b-PCL, MPEG-b-PVL, PCL-b-PEG-b-PCL and PVL-b-PEG-b-PVL were synthesized with good control of the molecular weight distribution via the ring opening polymerization of epsilon-caprolactone and delta-valerolactone monomers at 100 degrees C in toluene. In addition, the chemical and crystalline structures and the thermal properties of these block biodegradable copolymers were analyzed by means of NMR, gel permeation chromatography (GPC), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). It was found that the melting points and crystallinities of the block copolymers synthesized strongly depended on the molecular structures of the polyether and polyester building blocks. Only one glass transition stage was detected, indicating good chain/segmental miscibility between the hydrophilic MPEG/PEG and hydrophobic PCL/PVL blocks in the non-crystalline regions. Moreover, TGA analysis exhibited typical two-step decomposition profiles with the weight-loss percentages in good agreement with block compositions from NMR calculations.  相似文献   

13.
It is very challenging to realize well-controlled structural transformations in artificial supramolecules. Herein we report the construction of a novel family of multi-bisthienylethene hexagons with precise control of the shape and size as well as the specific number of photochromic units via coordination-driven self-assembly. These newly developed multi-bisthienylethene hexagons are highly sensitive and responsive to photostimuli, especially allowing for quantitative reversible supramolecular transformations triggered by light irradiation.  相似文献   

14.
The construction of a new family of endo-functionalized multiferrocenyl hexagons with various sizes via coordination-driven self-assembly is described. The structures of these novel metallacycles, containing several ferrocenyl moieties at their interior surface, are characterized by multinuclear NMR ((31)P and (1)H) spectroscopy, cold-spray ionization mass spectrometry (CSI-TOF-MS), elemental analysis, and molecular modeling. Insight into the structural and electrochemical properties of these endo-functionalized multiferrocenyl hexagons was obtained through cyclic voltammetry investigation.  相似文献   

15.
Cyclodextrin cavities have been grafted into a layered metal hydroxide to create hydrophobic nanopockets within the galleries of the inorganic solid. Neutral ferrocene molecules can be included within the grafted cavities by partitioning from a polar solvent to generate a new organometallic-organic-inorganic hybrid. The included ferrocene has been characterized by electronic and Raman spectroscopy. The capability of the cyclodextrin-functionalized solid to separate hydrophobic and hydrophilic derivatives of ferrocene is demonstrated.  相似文献   

16.
Cyclodextrin cavities have been intercalated in a layered metal hydroxide to create hydrophobic nanopockets within the galleries of the layered solid. Anthracene molecules have been included in the anchored cavities by partitioning from a polar solvent. The excitation-emission fluorescence spectra of the included anthracene show a total absence of Stokes shift. The orientational dynamics of the isolated, solvent-free anthracene molecules in the anchored cyclodextrin cavities have been probed by fluorescence anisotropy decay measurements. The results have been compared with those for anthracene included in cyclodextrin cavities in aqueous solutions.  相似文献   

17.
The self-assembly of a 1:1 mixture of copper(II) ions and a rigid heteroditopic ligand L containing phen and terpy binding units gives rise in the solid state to green crystals of a hexanuclear metallamacrocycle 1. X-ray crystallography reveals that 1 consists of molecular hexagons of the grid-type family in which each metal ion is bound to two different ligands through the phen and terpy units, plus a weakly coordinated PF6 (-) anion in a highly distorted octahedral geometry. ES-MS studies of acetonitrile solutions of L and copper(II) in a 1:1 ratio show mixtures of polynuclear complexes in which trinuclear L3Cu3 species are predominant.  相似文献   

18.
Solvent-induced self-organization approach was developed, for the first time, to produce polyurethane microporous templates and higher ordered morphologies such as micro or nanometer-sized polymeric hexagons and spheres. A novel melt transurethane methodology was designed and developed for synthesizing new class of cycloaliphatic polyurethanes under nonisocyanate and solvent-free conditions. In this new process, a diurethane monomer was polycondensed with equimolar amounts of diol in presence of Ti(OBu)4 as catalyst with the removal of low boiling alcohol from the equilibrium. The hydrogen bonding of the polyurethanes are very unique to their chemical structure and they undergo selective phase-separation process in solution to produce hexagonally packed microporous templates. The increase of water content in the polymer solution enhances the phase-separation process and the micro pores coalesce to isolate the encapsulated polymer matrix into polymeric hexagons or densely packed solid spheres. The concentration-dependent solution FTIR and 1H NMR of the polyurethanes revealed that the polymers possessing higher H-bonding association constants (K) have greater tendency to undergo solvent-induced self-organization phenomena. The mechanism of solvent-evaporation process indicated that only microporous polyurethanes have tendency to form higher ordered hexagons and spheres whereas others failed to show any new morphology. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2351–2366, 2007  相似文献   

19.
Nanometer-sized cavities are present in oligonuclear coordination compounds formed in molecular self-assembly processes from C(3)-symmetric ligands and appropriate metal complex fragments. The structures obtained can be described as basic polyhedra such as tetrahedron, hexahedron, or octahedron (see picture).  相似文献   

20.
One-dimensional (1-D) self-assemblies of Pt nanoparticles on a graphite surface have been synthesized via a template-directed sintering process of individual nanoparticles, using nonionic/cationic mixed hemicylindrical micelle templates of dodecyldimethylamine oxide surfactant at graphite/solution interfaces. The dimension and morphology of Pt nanoparticles can be widely controlled by the concentration of Pt ions equivalent to the mixing ratio of nonionic and cationic species in the surfactant micelle. This approach could be extended to fabricate a wide range of self-assembling metallic nanostructures on surfaces using various nonionic/cationic mixed micelle-like self-assemblies carrying metal ions at interfaces, while providing a fundamental insight into a 1-D self-assembly from individual nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号