首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(H2O)(6) (-) appears as a "magic" number water cluster in (H2O)(n) (-) mass spectra. The structure of the (H2O)(6) (-) isomer dominating the experimental population has been established only recently [N. I. Hammer et al., J. Phys. Chem. A 109, 7896 (2005)], and the most noteworthy characteristic of this isomer is the localization of the excess electron in the vicinity of a double-acceptor monomer. In the present work, we use a quantum Drude model to characterize the low-energy isomers and the finite temperature properties of (H2O)(6) (-). Comparison with ab initio calculations shows that the use of a water model employing distributed polarizabilities and distributed repulsive sites is necessary to correctly reproduce the energy ordering of the low-lying isomers. Both the simulations and the ab initio calculations predict that there are several isomers of (H2O)(6) (-) significantly lower in energy than the experimentally observed species, suggesting that the experimental distribution is far from equilibrium.  相似文献   

2.
Two stable products of reactions of water molecules with the Al3O3- cluster, Al3O4H2- and Al3O5H4-, are studied with electronic structure calculations. There are several minima with similar energies for both anions and the corresponding molecules. Dissociative absorption of a water molecule to produce an anionic cluster with hydroxide ions is thermodynamically favored over the formation of Al3O3-(H2O)n complexes. Vertical electron detachment energies of Al3O4H2- and Al3O5H4- calculated with ab initio electron propagator methods provide a quantitative interpretation of recent anion photoelectron spectra. Contrasts and similarities in these spectra may be explained in terms of the Dyson orbitals associated with each transition energy.  相似文献   

3.
The roles of hydrogen bonds in the solvation of an excess electron and a lithium atom in water hexamer cluster at 150 K have been studied by means of ab initio molecular dynamics simulations. It is found that the hydrogen bonded structures of (H(2)O)(6)(-) and Li(H(2)O)(6) clusters are very different from each other and they dynamically evolve from one conformer to other along their simulation trajectories. The populations of the single acceptor, double acceptor, and free type water molecules are found to be significantly high unlike that in pure water clusters. Free hydrogens of these type of water molecules primarily capture the unbound electron density in these clusters. It is found that the binding motifs of the free electron evolve with time and the vertical detachment energy of (H(2)O)(6)(-) and vertical ionization energy of Li(H(2)O)(6) also change with time. Assignments of the observed peaks in vibrational power spectra are done, and we found direct correlations between the time-averaged population of water molecules in different hydrogen bonding states and the spectral features. The dynamical aspects of these clusters have also been studied through calculations of time correlations of instantaneous stretch frequencies of OH modes which are obtained from the simulation trajectories through a time series analysis.  相似文献   

4.
Line lists of vibration-rotation transitions for the H(2) (16)O, H(2) (17)O, and H(2) (18)O isotopologues of the water molecule are calculated, which cover the frequency region of 0-20 000 cm(-1) and with rotational states up to J=20 (J=30 for H(2) (16)O). These variational calculations are based on a new semitheoretical potential energy surface obtained by morphing a high accuracy ab initio potential using experimental energy levels. This potential reproduces the energy levels with J=0, 2, and 5 used in the fit with a standard deviation of 0.025 cm(-1). Linestrengths are obtained using an ab initio dipole moment surface. That these line lists make an excellent starting point for spectroscopic modeling and analysis of rotation-vibration spectra is demonstrated by comparison with recent measurements of Lisak and Hodges [J. Mol. Spectrosc. (unpublished)]: assignments are given for the seven unassigned transitions and the intensity of the strong lines are reproduced to with 3%. It is suggested that the present procedure may be a better route to reliable line intensities than laboratory measurements.  相似文献   

5.
The effect of hydration on the electronic structure of H(2)O(2) is investigated by liquid-jet photoelectron spectroscopy measurements and ab initio calculations. Experimental valence electron binding energies of the H(2)O(2) orbitals in water are, on average, 1.9 eV red-shifted with respect to the gas-phase molecule. A smaller width of the first peak was observed in the photoelectron spectrum from the solution. Our experiment is complemented by simulated photoelectron spectra, calculated at the ab initio level of theory (with EOM-IP-CCSD and DFT methods), and using path-integral sampling of the ground-state density. The observed shift in ionization energy upon solvation is attributed to a combination of nonspecific electrostatic effects (long-range polarization) and of the specific interactions between H(2)O(2) and H(2)O molecules in the first solvation shell. Changes in peak widths are found to result from merging of the two lowest ionized states of H(2)O(2) in water due to conformational changes upon solvation. Hydration effects on H(2)O(2) are stronger than on the H(2)O molecule. In addition to valence spectra, we report oxygen 1s core-level photoelectron spectra from H(2)O(2)(aq), and observed energies and spectral intensities are discussed qualitatively.  相似文献   

6.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded complex of phenol with four water molecules PhOH...(H2O)4 (structure 4A) have been predicted using ab initio and DFT (B3LYP) calculations with 6-31G(d,p) basis set. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and B3LYP calculations show that the observed four intense bands at 3299, 3341, 3386 and 3430 cm(-1) can be assigned to the hydrogen-bonded OH stretching vibrations in the complex PhOH...(H2O)4 (4A). The complexation leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The predicted red shifts for these vibrations with B3LYP/6-31G(d,p) calculations are in very good agreement with the experimentally observed. It was established that the phenolic OH stretching vibration is the most sensitive to the hydrogen bonding. The predicted red-shift with the B3LYP/6-31G(d,p) calculations for the most stable ring structure 4A (-590 cm(-1)) is in better agreement with the experimentally observed than the red-shift, predicted with SCF/6-31G(d,p) calculations. The magnitude of the wavenumber shift is indicative of relatively strong OH...H hydrogen-bonded interaction. The complexation between phenol and four water molecules leads to strong increase of the IR intensity of the phenolic OH stretching vibration (up to 38 times).  相似文献   

7.
The radical-radical oxidation reaction, O(3P)+C3H3 (propargyl)-->H(2S)+C3H2O (propynal), was investigated using vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed-beam configuration, together with ab initio and statistical calculations. The barrierless addition of O(3P) to C3H3 is calculated to form energy-rich addition complexes on the lowest doublet potential energy surface, which subsequently undergo direct decomposition steps leading to the major reaction products, H+C3H(2)O (propynal). According to the nascent H-atom Doppler-profile analysis, the average translational energy of the products and the fraction of the average transitional energy to the total available energy were determined to be 5.09+/-0.36 kcal/mol and 0.077, respectively. On the basis of a comparison with statistical prior calculations, the reaction mechanism and the significant internal excitation of the polyatomic propynal product can be rationalized in terms of the formation of highly activated, short-lived addition-complex intermediates and the adiabaticity of the excess available energy along the reaction coordinate.  相似文献   

8.
IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.  相似文献   

9.
We have simulated exchange of inner-sphere and bulk water molecules for different sizes of Al3+(aq) clusters, Al(H2O)63+ + nH2O for n = 0, 1, 6, or 12, with ab initio and molecular dynamics simulations, in order to understand how robust the ab initio method is for identifying hydrolytic reaction pathways of particular importance to geochemistry. In contrast to many interfacial reactions, this particular elementary reaction is particularly simple and well-constrained by experiment. Nevertheless, we find that a rich array of parallel reaction pathways depend sensitively on the details of the solvation sphere and structure and that larger clusters are not necessarily better. Inner-sphere water exchange in Al3+(aq) may occur through two Langford-Gray dissociative pathways, one in which the incoming and outgoing waters are cis, the other in which they are trans to one another. A large majority of exchanges in the molecular dynamics simulations occurred via the trans mechanism, in contrast to the predictions of the ab initio method. In Al(H2O)63+ + H2O, the cis mechanism has a transition state of 84.3 kJ/mol, which is in good agreement with previous experimental and ab initio results, while the trans mechanism has only a saddle point with two negative frequencies, not a transition state, at 89.7 kJ/mol. In addition to the exchange mechanisms, dissociation pathways could be identified that were considerably lower in energy than experiment and varied considerably between 60 and 100 kJ/mol, depending on the particular geometry and cluster size, with no clear relation between the two. Ab initio calculations using large clusters with full second coordination spheres (n = 12) were unable to find dissociation or exchange transition states because the network of hydrogen bonds in the second coordination sphere was too rigid to accommodate the outgoing inner-sphere water. Our results indicate that caution should surround ab initio simulation of complicated dynamic processes such as hydrolysis, ion exchange, and interfacial reactions that involve several steps. Dynamic methods of simulation need to accompany static methods such as ab initio calculation, and it is best to consider simulated pathways as hypotheses to be tested experimentally rather than definitive properties of the reaction.  相似文献   

10.
The gas phase infrared spectrum (3250-3810 cm-1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by action spectroscopy of mass selected and isolated ions. The four bands obtained are assigned to N-H stretching modes and to O-H stretching modes. The N-H stretching modes observed are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The O-H stretching modes observed are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicular transitions. The K-type equidistant rotational spacings of 11.1(2) cm-1 (NH4+) and 29(3) cm-1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The relative band intensities recorded compare favorably with predictions of high level ab initio calculations, except on the nu3(H2O) band for which the observed value is about 20 times weaker than the calculated one. The nu3(H2O)/nu1(H2O) intensity ratios from other published action spectra in other cationic complexes vary such that the nu3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular, among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggest that the coupling of the nu3(H2O) and nu1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings together render a picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high level electronic structure calculations at the coupled-cluster singles and doubles with a perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. The authors' extrapolated values at the CCSD(T) complete basis set limit are De [NH4+-(H2O)]=-85.40(+/-0.24) kJ/mol and DeltaH(298 K) [NH4+-(H2O)]=-78.3(+/-0.3) kJ/mol (CC2), in which double standard deviations are indicated in parentheses.  相似文献   

11.
We report on a study of the photodissociation spectroscopy of weakly bound Zn+(H2O) and Zn+(D2O) complexes. The work is supported by ab initio electronic structure calculations of the ground and low-lying excited energy surfaces. We assign two molecular absorption bands in the near UV correlating to Zn+ (4s-4p)-based transitions, and identify vibrational progressions associated with both intermolecular and intramolecular vibrational modes of the cluster. Partially resolved rotational structure is consistent with a C(2V) equilibrium complex geometry. Experimental spectroscopic constants are in very good agreement with ab initio theoretical predictions. Results are compared with previous work on main group and transition metal ion-H2O clusters.  相似文献   

12.
The structure, stability and vibrational spectrum of the binary complex between HONO2 and H2O have been investigated using ab initio calculations at SCF and MP2 levels with different basis sets and B3LYP/6-31G(d,p) calculations. Full geometry optimization was made for the complex studied. It was established that the hydrogen-bonded H2O...HONO2 complex has a planar structure. The corrected values of the dissociation energy at the SCF and MP2 levels and B3LYP calculations are indicative of relatively strong OH...O hydrogen-bonded interaction. The changes in the vibrational characteristics (vibrational frequencies and infrared intensities) arising from the hydrogen bonding between HONO2 and H2O have been estimated by using the ab initio calculations at SCF and MP2 levels and B3LYP/6-31G(d,p) calculations. It was established that the most sensitive to the complexation is the stretching O-H vibration from HONO2. In agreement with the experiment, its vibrational frequency in the complex is shifted to lower wavenumbers. The predicted frequency shift with the B3LYP/6-31G(d,p) calculations (-439 cm(-1)) is in the best agreement with the experimentally measured (-498 cm(-1)). The intensity of this vibration increases dramatically upon hydrogen bonding. The ab initio calculations at the SCF level predict an increase up to five times; at the MP2 level up to 10 times and the B3LYP/6-31G(d,p) predicted increase is up to 17 times. The good agreement between the predicted values of the frequency shifts and those experimentally observed show that the structure of the hydrogen-bonded complex H2O...HONO2 is reliable.  相似文献   

13.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

14.
Rotationally resolved IR spectra of M+ (H2O)Ar cluster ions for M=Na, K, and Cs in the O-H stretch region were measured in a triple-quadrupole mass spectrometer. Analysis of the spectra yields O-H stretch vibrational band origins and relative IR intensities of the symmetric and asymmetric modes. The effect of the alkali-metal ions on these modes results in frequency shifts and intensity changes from the gas phase values of water. The A-rotational constants are also obtained from the rotational structure and are discussed. Experimentally, the temperatures of these species were deduced from the relative populations of the K-rotational states. The internal energies and temperatures of the cluster ions for Na and K were simulated using RRKM calculations and the evaporative ensemble formalism. With binding energies and vibrational frequencies obtained from ab initio calculations, the average predicted temperatures are qualitatively consistent with the experimental values and demonstrate the additional cooling resulting from argon evaporation.  相似文献   

15.
The room temperature absorption spectra of water and its isotopomers D2O and HOD have been determined in absolute cross section units in the 125 to 145 nm wavelength region using synchrotron radiation. The experimental results for these B band spectra are compared with results from quantum mechanical calculations using accurate diabatic ab initio potentials. A Monte Carlo sampling over the initial rotational states of the molecules is applied in order to calculate the cross sections at a temperature of 300 K. The overall rotation of the water molecule is treated exactly. Both for the experimental and for the theoretical spectrum an analysis is made in terms of a component attributed to rapid direct dissociation processes and a component attributed to longer-lived resonances. The agreement between the results from experiment and theory is excellent for H2O and D2O. In the case of HOD in the results of theory two more resonances are found at low energy. It is demonstrated that the width of the resonances of 0.04 eV is the result of overlapping and somewhat narrower resonances in the spectra of molecules differing in rotational ground state.  相似文献   

16.
We present full-dimensional potential energy surfaces (PESs) for hydrated chloride based on the sum of ab initio (H(2)O)Cl(-), (H(2)O)(2), and (H(2)O)(3) potentials. The PESs are shown to predict minima and corresponding harmonic frequencies accurately on the basis of comparisons with previous and new ab initio calculations for (H(2)O)(2)Cl(-), (H(2)O)(3)Cl(-), and (H(2)O)(4)Cl(-). An estimate of the effect of the 3-body water interaction is made using a simple 3-body water potential that was recently fit to tens of thousands of ab initio 3-body energies. Anharmonic, coupled vibrational calculations are presented for these clusters, using the "local monomer model" for the high frequency intramolecular modes. This model is tested against previous "exact" calculations for (H(2)O)Cl(-). Radial distribution functions at 0 K obtained from quantum zero-point wave functions are also presented for the (H(2)O)(2)Cl(-) and (H(2)O)(3)Cl(-) clusters.  相似文献   

17.
The effect of extending the O−H bond length(s) in water on the hydrogen-bonding strength has been investigated using static ab initio molecular orbital calculations. The “polar flattening” effect that causes a slight σ-hole to form on hydrogen atoms is strengthened when the bond is stretched, so that the σ-hole becomes more positive and hydrogen bonding stronger. In opposition to this electronic effect, path-integral ab initio molecular-dynamics simulations show that the nuclear quantum effect weakens the hydrogen bond in the water dimer. Thus, static electronic effects strengthen the hydrogen bond in H2O relative to D2O, whereas nuclear quantum effects weaken it. These quantum fluctuations are stronger for the water dimer than in bulk water.  相似文献   

18.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

19.
The reaction for SiH3+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The single point calculations for all the stationary points were carried out at the QCISD(T) /6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major pathway is the SiH3+O(3P)→IM1→TS3→IM2→TS8→HOSi+H2. The other minor products include the HSiOH+H, H2SiO+H and HSiO+H2. Furthermore, the products HOSi, HSiO and HSiOH(cis) can undergo dissociation into the product SiO. In addition, the calculations provide a possible interpretation for disagreement about the mechanism of the reaction SiH4+O(3P). It suggests that the products HSiOH, H2SiO and SiO observed by Withnall and Andrews are produced from the secondary reaction SiH3+O(3P) and not from the reaction SiH4+O(3P).  相似文献   

20.
Rotational spectra of three isotopomers of the Xe-(H2O)2 van der Waals trimer were recorded using a pulsed-nozzle, Fourier transform microwave spectrometer. Nine [nine, four] a-type and twelve [eleven, seven] b-type transitions were measured for the 132Xe-(H2O)2 [129Xe-(H2O)2, 131Xe-(H2O)2] isotopomer. The determined rotational and centrifugal distortion constants were used to extract information about the structure and vibrational motions of the complex. The nuclear quadrupole hyperfine structures due to the 131Xe (nuclear spin quantum number I=3/2) nucleus were also detected. The large value of the off-diagonal nuclear quadrupole coupling constant chiab in particular provides detailed insight into the electronic environment of the xenon atom and the orientations of the water molecules within the complex. An effective structure that best reproduces the experimental 131Xe nuclear quadrupole coupling constants is rationalized by ab initio calculations. An overall goal of this line of work is to determine how the successive solvation of a xenon atom with water molecules affects the xenon electron distribution and its intermolecular interactions. The results may provide molecular level interpretations of 129Xe NMR data from, for example, imaging experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号