首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
探究基座、臂、关节全柔性影响下空间机器人动力学模拟、运动控制及基座、臂、关节三重柔性振动主动抑制的问题,设计了不基于系统模型信息的运动振动一体化输入受限重复学习控制算法.将柔性基座与关节等效为线性弹簧与扭转弹簧,柔性臂视为欧拉-伯努利梁模型,利用拉格朗日方程与假设模态法建立动力学模型,然后,用奇异摄动理论将模型分解为包含刚性变量与臂柔性振动的慢变子系统,包含基座、关节柔性振动的快变子系统,并分别设计相应的子控制器,构成了带关节柔性补偿的一体化控制算法.针对慢变子系统,提出输入受限重复学习控制算法,由双曲正切函数,饱和函数与重复学习项构成,双曲正切函数与饱和函数实现输入力矩受限要求,重复学习项补偿周期性系统误差,以完成对基座姿态、关节铰周期轨迹的渐进稳定追踪.然而,为了同时抑制慢变子系统臂的柔性振动,运用虚拟力的概念,构造同时反映臂柔性振动与系统刚性运动的混合轨迹,提出了基于虚拟力概念的输入受限重复学习控制器,保证基座、关节轨迹精确追踪的同时,对臂的柔性振动主动抑制.针对快变子系统,采用线性二次最优控制算法抑制基座与关节的柔性振动.仿真结果表明:控制器适用于一般柔性非线性系统,满足输入力矩受限要求,实现对周期信号的高精度追踪,有效抑制基座、臂、关节的柔性振动,证实算法的可行性.  相似文献   

2.
全柔性空间机器人运动振动一体化输入受限重复学习控制   总被引:9,自引:7,他引:2  
付晓东  陈力 《力学学报》2020,52(1):171-183
探究基座、臂、关节全柔性影响下空间机器人动力学模拟、运动控制及基座、臂、关节三重柔性振动主动抑制的问题, 设计了不基于系统模型信息的运动振动一体化输入受限重复学习控制算法. 将柔性基座与关节等效为线性弹簧与扭转弹簧, 柔性臂视为欧拉-伯努利梁模型, 利用拉格朗日方程与假设模态法建立动力学模型, 然后, 用奇异摄动理论将模型分解为包含刚性变量与臂柔性振动的慢变子系统, 包含基座、关节柔性振动的快变子系统, 并分别设计相应的子控制器, 构成了带关节柔性补偿的一体化控制算法. 针对慢变子系统, 提出输入受限重复学习控制算法, 由双曲正切函数, 饱和函数与重复学习项构成, 双曲正切函数与饱和函数实现输入力矩受限要求, 重复学习项补偿周期性系统误差, 以完成对基座姿态、关节铰周期轨迹的渐进稳定追踪. 然而, 为了同时抑制慢变子系统臂的柔性振动, 运用虚拟力的概念, 构造同时反映臂柔性振动与系统刚性运动的混合轨迹, 提出了基于虚拟力概念的输入受限重复学习控制器, 保证基座、关节轨迹精确追踪的同时, 对臂的柔性振动主动抑制. 针对快变子系统, 采用线性二次最优控制算法抑制基座与关节的柔性振动. 仿真结果表明: 控制器适用于一般柔性非线性系统, 满足输入力矩受限要求, 实现对周期信号的高精度追踪, 有效抑制基座、臂、关节的柔性振动, 证实算法的可行性.   相似文献   

3.
谢立敏  陈力 《力学学报》2012,44(6):1057-1065
讨论了漂浮基柔性空间机器人系统的动力学建模、运动控制算法设计以及关节、臂双重柔性振动的分级主动抑制问题. 利用系统动量、动量矩守恒关系和拉格朗日-假设模态法对系统进行动力学分析,建立系统动力学方程. 基于奇异摄动法,将系统分解为表示系统刚性运动部分的慢变子系统, 表示由柔性臂引起的系统柔性运动部分的快变子系统1和表示由柔性关节引起的系统柔性运动部分的快变子系统2. 针对慢变子系统提出一种鲁棒控制方法来补偿系统参数的不确定性和柔性关节引起的转动误差,实现系统期望运动轨迹的渐近跟踪;针对快变子系统1采用线性二次型最优控制器来抑制由柔性臂引起的系统柔性振动;针对快变子系统2设计了基于机械臂和电机转子的转角速度差值的反馈控制器来抑制由柔性关节引起的系统柔性振动. 因此,系统的总控制律为以上3个子系统控制律的综合. 最后通过仿真实验证明了所提出的混合控制方法的有效性.   相似文献   

4.
讨论了关节柔性且系统参数不确定的漂浮基空间机器人系统的动力学建模过程、运动轨迹跟踪控制算法设计及系统柔性振动的主动抑制问题。利用系统动量、动量矩守恒关系和拉格朗日法对系统动力学进行分析,并建立系统动力学方程。基于奇异摄动法将系统分解为表示系统刚性运动部分的慢变子系统和表示系统柔性运动部分的快变子系统。针对慢变子系统提出了一种自适应滑模控制算法。该控制算法是由基于滑模面的等效控制项、自适应控制项和PID反馈控制项组成。因此,它集合了滑模控制、自适应算法和PID技术的优点,且弥补了三种算法各自的缺点。该控制算法能够有效地补偿系统的转动误差和不确定参数,提高控制系统的精度。针对快变子系统,提出基于速度差值的反馈控制算法来抑制柔性关节引起的系统柔性振动,保证系统的稳定性。最后,通过仿真实验证明了提出的混合控制算法的有效性。  相似文献   

5.
梁捷  陈力 《计算力学学报》2014,31(4):459-466
空间机器人系统的柔性主要体现在空间机器人的臂杆和连接各臂杆之间的铰关节。由于空间机器人系统结构的复杂性,以往研究人员对同时具有柔性关节和柔性臂的系统关注不够。为此探讨了参数未知柔性关节-柔性臂空间机器人系统的动力学模拟、轨迹跟踪控制算法设计和关节、臂杆双重柔性振动的主动抑制问题。首先,采用多体动力学建模方法并结合漂浮基空间机器人固有的线动量和角动量守恒动力学特性,推导了系统的动力学方程。以此为基础,考虑到空间机器人实际应用中各关节铰具有较强柔性的情况,引入一种关节柔性补偿控制器解决了传统奇异摄动法应用受关节柔性限制问题,导出了适用于控制系统算法设计的数学模型。然后,利用该模型,基于反演思想在慢时标子系统中设计神经网络自适应控制算法来补偿系统参数未知和柔性关节引起的转动误差,实现系统运动轨迹跟踪性能;针对快时标子系统,设计了鲁棒最优控制算法抑制因柔性关节及柔性臂引起的系统双重弹性振动,保证系统的稳定性。最后,通过仿真对比实验验证了所设计控制算法的有效性。  相似文献   

6.
机器人关节非线性摩擦的准确描述对提高机器人轨迹精度、定位精度及其可靠性等具有重要理论意义和科学价值. 然而, 机器人关节通常包含电机、减速器、驱动器和传感器, 是一个复杂的机电耦合系统, 随服役时间及工况的变化, 机器人关节的摩擦参数也存在显著时变效应, 难以准确描述, 造成轨迹精度下降, 为机器人后期精度维护造成巨大困难. 因此, 本文定量评价了摩擦参数对机器人输出力矩的影响, 提出考虑时变效应的机器人关节非线性摩擦参数反求方法. 首先, 建立机器人关节一般非线性摩擦模型. 设计机器人关节恒速跟踪实验, 通过卡尔曼滤波对实验采集的数据进行处理, 进而建立关节速度和驱动电机电流之间的关系, 完成关节一般非线性摩擦模型建立. 其次, 择取非线性摩擦模型关键参数. 建立包含非线性摩擦的机器人动力学模型, 基于激励轨迹计算各关节力矩, 并对其开展灵敏度分析, 择取对关节力矩灵敏性较高的摩擦参数. 再次, 建立关节输出力矩和摩擦参数一一对应的数据集. 基于实际工况构建摩擦参数取值空间, 采用最优拉丁超立方法对摩擦参数采样, 并将其代入机器人动力学模型计算出相应的力矩, 从而求得关节输出力矩和摩擦参数一一对应的数据集. 最后, 建立反问题神经网络并对其进行训练, 实现非线性摩擦模型关键参数反求, 并进行验证. 研究结果表明关节非线性摩擦的准确描述减小了机器人低速运动换向时摩擦力矩突变对机器人轨迹的影响, 显著提升了机器人轨迹精度.   相似文献   

7.
梁捷  秦开宇  陈力 《力学季刊》2019,40(3):529-542
谐波减速器和力矩传感器等柔性元件因其独特性能而广泛应用在空间机器人关节系统中,以获取高减速比.但同时这些柔性元件的存在为空间机械臂系统引入了关节柔性,使得对其稳定控制变得更为复杂.基于此,文中讨论了基于自适应回归小波神经网络(Self-Recurrent Wavelet Neural Networks, SRWNN)的弹性关节空间机械臂系统动力学建模及级联智能滑模控制.首先,利用级联系统理论及第二类拉格朗日方法推导出了由外环刚性臂子系统和内环关节电机转子子系统组成的系统级联动力学模型;其次,为两个子系统分别设计了内、外环自适应滑模回归小波神经网络控制.外环控制算法以期望轨迹为控制量,而其控制信号作为抑制弹性关节振动的内环控制算法的控制量,整个控制系统由内、外环控制系统叠加而成;而后,基于Lyapunov稳定性理论证明了整个控制系统的稳定性并设计了自适应回归小波神经网络的各权值参数在线学习算法.所提的控制算法有效地消除了模型不确定的影响,避免了复杂的求导计算和角加速度可测的要求,同时,控制系统设计过程中未涉及惯常奇异摄动双时标分解操作,在理论上适合任意大小的关节柔性刚度.最后,系统对比仿真试验证明了所提的级联智能控制算法优于惯常基于奇异摄动法和基于柔性铰补偿奇异摄动法的控制方案.  相似文献   

8.
为实现对基座、关节和臂均存在弹性的空间机器人运动高精度控制及多重振动抑制,建立了基座、关节和臂全弹性空间机器人动力学模型,并采用运动有限维PD重复学习控制及振动同步抑制方案进行研究.首先,利用线性弹簧、扭转弹簧和欧拉-伯努力梁理论,假设模态法和动量守恒定律,采用拉格朗日方程建立了弹性基座、柔性关节和柔性臂空间机器人动力学模型,之后,选取反映柔性臂振动的前两阶模态及基座和关节刚性运动变量为慢变子变量,选取基座和关节弹性振动变量为快变子变量,根据奇异摄动理论将系统降维分解成慢、快变子系统.最后设计了慢变子系统的运动有限维PD重复学习控制及快变子系统的线性最优双重减振控制构成的总控制器.数值仿真结果验证了算法的有效性.  相似文献   

9.
方五益  郭晛  黎亮  章定国 《力学学报》2020,52(4):965-974
本文探究了铰柔性对机器人动力学响应和动力学控制的影响. 首先, 建立由$n$个柔性铰和$n$个柔性杆组成的空间机器人模型, 运用递推拉格朗日动力学方法, 得到柔性机器人系统的刚柔耦合动力学方程. 在动力学建模过程中, 除了考虑杆件的拉伸变形、弯曲变形、扭转变形以及非线性耦合变形对机器人系统动力学行为的影响, 还考虑了铰的柔性对机器人动力学响应和控制的影响. 其中, 柔性铰模型是基于Spong的柔性关节简化模型, 将柔性铰看成线性扭转弹簧, 不仅考虑了铰阻尼的存在, 还考虑了柔性铰的质量效应. 其次, 编写了空间柔性铰柔性杆机器人仿真程序, 研究铰的刚度系数和阻尼系数对系统动力学响应的影响. 研究表明: 随着柔性铰刚度系数的增大, 柔性机器人的动态响应幅值减小, 振动频率变大. 随着柔性铰阻尼系数的增大, 柔性机器人的动态响应幅值减小, 振动幅值的衰减速度变快. 可通过调节柔性铰的刚度和阻尼来减小柔性铰柔性杆机器人的振动, 因此铰阻尼的研究具有重要工程意义. 最后, 研究了铰柔性在机器人系统动力学控制中的影响. 在刚性铰机械臂和柔性铰机械臂完成相同圆周运动时, 通过逆动力学方法求解得到两种情况下的关节驱动力矩. 研究表明: 引入柔性铰会使控制所需的驱动力矩变小, 对机器人控制的影响显著.   相似文献   

10.
研究了双臂弹性关节空间机器人的改进型非线性干扰观测器(nonlinear disturbance observer,NDO)设计、新型自适应动态终端滑模控制和弹性振动抑制问题。首先,考虑空间机器人的关节弹性,基于非线性级联系统的结构建立弹性关节空间机器人模型,分为外环机械臂动力学和内环关节动力学,具有渐近稳定性。针对外环机械臂动力学模型,设计基于改进型NDO的新型自适应动态终端滑模控制算法。针对内环关节动力学模型,设计力矩反馈控制算法来抑制弹性关节振动。本文提出的基于非线性级联系统的自适应动态终端滑模控制算法具有良好的动态特性及较强的鲁棒性,可在关节柔性刚度较小情况下,快速完成弹性关节振动抑制,实现空间机器人轨迹的精确跟踪。系统仿真试验证明了本文控制算法的正确性。  相似文献   

11.
针对带非线性摩擦力矩和负载扰动的高精度猎雷声纳基阵姿态稳定系统,提出了一种基于神经网络的自适应反步法控制方法。其中神经网络用于估计未知非线性摩擦力矩,进而设计反步法控制器和参数自适应律来对神经网络估计误差和负载扰动进行补偿。最后应用Lyapunov方法证明了所提出的自适应控制器能保证闭环系统的稳定性,并且可以通过选择适当的控制器参数来调整收敛率。仿真结果表明,基于神经网络的自适应反步法控制方法与PID控制相比,系统的动、静态性能指标及鲁棒性得到了全面的改善,与双闭环PID控制相比,跟踪精度提高了3倍多。  相似文献   

12.
Ding  Runze  Ding  Chenyang  Xu  Yunlang  Yang  Xiaofeng 《Nonlinear dynamics》2022,108(2):1339-1356

High precision motion control of permanent magnet linear motors (PMLMs) is limited by undesired nonlinear dynamics, parameter variations, and unstructured uncertainties. To tackle these problems, this paper presents a neural-network-based adaptive robust precision motion control scheme for PMLMs. The presented controller contains a robust feedback controller and an adaptive compensator. The robust controller is designed based on the robust integral of the sign of the error method, and the adaptive compensator consists of a neural network component and a parametric component. Moreover, a composite learning law is designed for the parameter adaption in the compensator to further enhance the control performance. Rigorous stability analysis is provided by using the Lyapunov theory, and asymptotic tracking is theoretically achieved. The effectiveness of the proposed method is verified by comparative simulations and experiments on a PMLM-driven motion stage.

  相似文献   

13.
In this paper, a self-organizing Takagi–Sugeno–Kang (TSK) type fuzzy neural network (STFNN) is proposed. The self-organizing approach demonstrates the property of automatically generating and pruning the fuzzy rules of STFNN without the preliminary knowledge. The learning algorithms not only extract the fuzzy rule of STFNN but also adjust the parameters of STFNN. Then, an adaptive self-organizing TSK-type fuzzy network controller (ASTFNC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller uses an STFNN to approximate an ideal controller, and the robust compensator is designed to eliminate the approximation error in the Lyapunov stability sense without occurring chattering phenomena. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived to speed up the convergence rates of the tracking error. Finally, the proposed ASTFNC system is applied to a DC motor driver on a field-programmable gate array chip for low-cost and high-performance industrial applications. The experimental results verify the system stabilization and favorable tracking performance, and no chattering phenomena can be achieved by the proposed ASTFNC scheme.  相似文献   

14.
讨论了载体位置、姿态均不受控情况下,具有有界干扰及有界未知参数的漂浮基柔性两杆空间机械臂的具有鲁棒性的关节运动控制与柔性振动最优控制算法设计问题。首先选择合理的联体坐标系,利用拉格朗日方程并结合动量守恒原理得到漂浮基柔性两杆空间机械臂系统的动力学方程。通过合理选择联体坐标系与利用奇异摄动理论,实现了两个柔性杆柔性振动之间、关节运动与两柔性杆柔性振动的解耦,得到了柔性两杆空间机械臂的慢变子系统与柔性臂快变子系统。针对两个子系统设计相应的控制规律,即增广鲁棒慢变子系统控制律与柔性臂快变子系统最优控制律,这两个相应的子系统控制规律综合到一起构成飘浮基柔性两杆空间机械臂总的关节运动与臂柔性振动控制的组合控制律。系统的数值仿真证实了方法的有效性。该控制方案不需要直接测量漂浮基的位置、移动速度和移动加速度。  相似文献   

15.
This study presents a self-organizing functional-linked neuro-fuzzy network (SFNN) for a nonlinear system controller design. An online learning algorithm, which consists of structure learning and parameter learning of a SFNN, is presented. The structure learning is designed to determine the number of fuzzy rules and the parameter learning is designed to adjust the parameters of membership function and corresponding weights. Thus, an adaptive self-organizing functional-linked neuro-fuzzy control (ASFNC) system, which is composed of a computation controller and a robust compensator, is proposed. In the computation controller, a SFNN observer is utilized to approximate the system dynamic and the robust compensator is designed to eliminate the effect of the approximation error introduced by the SFNN observer upon the system stability. Finally, to show the effectiveness of the proposed ASFNC system, it is applied to a chaotic system. The simulation results demonstrate that favorable control performance can be achieved by the proposed ASFNC scheme without any knowledge of the control plants and without requiring preliminary offline tuning of the SFNN observer.  相似文献   

16.
The flight control problem of a flexible air-breathing hypersonic vehicle is presented in the presence of input constraint and aerodynamic uncertainty. A control-oriented model, where aerodynamic uncertainty and the strong couplings between the engine and flight dynamics are included, is derived to reduce the complexity of controller design. The flexible dynamics are viewed as perturbations of the model. They are not taken into consideration at the level of control design, the influence of which is evaluated through simulation. The control-oriented model is decomposed into velocity subsystem and altitude subsystem, which are controlled separately. Then robust adaptive controller is developed for the velocity subsystem, while the controller which combines dynamic surface control and radial basis function neural network is designed for the altitude subsystem. The unknown nonlinear function is approximated by the radial basis function neural network. Minimal-learning parameter technique is utilized to estimate the maximum norm of ideal weight vectors instead of their elements to reduce the computational burden. To handle input constraints, additional systems are constructed to analyze their impact, and the states of the additional systems are employed at the level of control design and stability analysis. Besides, “explosion of terms” problem in the traditional backstepping control is circumvented using a first-order filter at each step. By means of Lyapunov stability theory, it is proved theoretically that the designed control law can assure that tracking error converges to an arbitrarily small neighborhood around zero. Simulations are performed to demonstrate the effectiveness of the presented control scheme in coping with input constraint and aerodynamic uncertainty.  相似文献   

17.
Most commercial antilock braking system (ABS) is based on a look-up table. The table is calibrated through laboratory experiments and engineering field tests under specified road conditions, but it is not adaptive. To attack this problem, this paper proposes an adaptive exponential-reaching sliding-mode control (AERSMC) system for an ABS. The proposed AERSMC system is composed of an equivalent controller and an exponential compensator. The equivalent controller uses a functional-linked wavelet neural network (FWNN) to online approximate the system uncertainties and the exponential compensator is designed to eliminate the effect of the approximation error introduced by the FWNN uncertain observer with an exponential-reaching law. In addition, the adaptive laws online-tune the controller parameters in the sense of Lyapunov function to guarantee the system stability. Finally, the simulation results verify that the proposed AERSMC system can achieve favorable slip tracking performance and is robust against parameter variations in the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号