首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
Chen CH  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(5):2307-2316
The shift of the IR nu(S)(-)(H) frequency to lower wavenumbers for the series of complexes [Ni(II)(L)(P-(o-C6H4S)2(o-C6H4SH))]0/1- (L = PPh3 (1), Cl (6), Se-p-C6H4-Cl (5), S-C4H3S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni-S...H-S] interactions. Compared to the Ni...S(H) distance, in the range of 3.609-3.802 A in complexes 1 and 4-7, the Ni...S(CH3) distances of 2.540 and 2.914 A observed in the [Ni(II)(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at delta 1.820 (-60 degrees C) and 2.109 ppm (60 degrees C) (C4D8O)) and the Ni...S(CH3) distances of 3.258 and 3.229 A found in the [Ni(II)(L)(P(o-C6H4S)2(o-C6H4-SCH3))]1- complexes (L = SPh (9), SePh (10)) also support the idea that the pendant thiol protons of the Ni(II)-thiol complexes 1/4-7 were attracted by both the sulfur of thiolate and the nickel. The increased basicity (electronic density) of the nickel center regulated by the monodentate ligand attracted the proton of the pendant thiol effectively and caused the weaker S...H bond. In addition, the pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization. Compared to complex 1a, the stronger intramolecular [Ni-S...H-S] interaction (or a combination of [Ni-S...H-S]/[Ni...H-S] interactions) found in complexes 4-7 led to the weaker S-H bond strength and accelerated the oxidation (by O2) of complexes 4-7 to produce the [Ni(Y)(L)(P(o-C6H4S)3)]1- (L = Se-p-C6H4-Cl (11), SePh (12), S-C4H3S (13)) complexes.  相似文献   

2.
Lee CM  Chuang YL  Chiang CY  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(26):10895-10904
The stable mononuclear Ni(III)-thiolate complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- (L = SePh (2), Cl (3), SEt (4), 2-S-C4H3S (5), CH2CN (7)) were isolated and characterized by UV-vis, EPR, IR, SQUID, CV, 1H NMR, and single-crystal X-ray diffraction. The increased basicity (electronic density) of the nickel center of complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability and reactivity. In contrast to the irreversible reduction at -1.17 V (vs Cp2Fe/Cp2Fe+) for complex 3, the cyclic voltammograms of complexes [NiIII(SePh)(P(o-C6H4S)3)]-, 2, 4, and 7 display reversible NiIII/II redox processes with E(1/2) = -1.20, -1.26, -1.32, and -1.34 V (vs Cp2Fe/Cp2Fe+), respectively. Compared to complex 2 containing a phenylselenolate-coordinated ligand, complex 4 with a stronger electron-donating ethylthiolate coordinated to the Ni(III) promotes dechlorination of CH2Cl2 to yield complex 3 (kobs = (6.01 +/- 0.03) x 10-4 s-1 for conversion of complex 4 into 3 vs kobs = (4.78 +/- 0.02) x 10-5 s-1 for conversion of complex 2 into 3). Interestingly, addition of CH3CN into complex 3 in the presence of sodium hydride yielded the stable Ni(III)-cyanomethanide complex 7 with a NiIII-CH2CN bond distance of 2.037(3) A. The NiIII-SEt bond length of 2.273(1) A in complex 4 is at the upper end of the 2.12-2.28 A range for the NiIII-S bond lengths of the oxidized-form [NiFe] hydrogenases. In contrast to the inertness of complexes 3 and 7 under CO atmosphere, carbon monoxide triggers the reductive elimination of the monodentate chalcogenolate ligand of complexes 2, 4, and 5 to produce the trigonal bipyramidal complex [NiII(CO)(P(C6H3-3-SiMe3-2-S)3]- (6).  相似文献   

3.
Chiou TW  Liaw WF 《Inorganic chemistry》2008,47(17):7908-7913
The unprecedented nickel(III) thiolate [Ni (III)(OR)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [R = Ph ( 1), Me ( 3)] containing the terminal Ni (III)-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) with 3 equiv of [Na][OPh] in tetrahydrofuran (THF)-CH 3CN and the reaction of complex 1 with 1 equiv of [Bu 4N][OMe] in THF-CH 3OH, respectively. Interestingly, the addition of complex 1 into the THF-CH 3OH solution of [Me 4N][OH] also yielded complex 3. In contrast to the inertness of complex [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH 3CN solution of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) yielded the known [Ni (III)(CH 2CN)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) ( 4). At 77 K, complexes 1 and 3 exhibit a rhombic signal with g values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic g values of the known trigonal-bipyramidal Ni (III) [Ni (III)(L)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) (L = SePh, SEt, Cl) complexes. Compared to complexes [Ni (III)(EPh)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [E = S ( 2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex 1 coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni (III)-OMe bond length of 1.885(2) A found in complex 3, the longer Ni (III)-OPh bond distance of 1.910(3) A found in complex 1 may be attributed to the absence of sigma and pi donation from the [OPh]-coordinated ligand to the Ni (III) center.  相似文献   

4.
Mononuclear, distorted square planar [Ni(II)(ER)(P(o-C(6)H(4)S)(2)(o-C(6)H(4)SH))](-) (ER = SePh (1), 2-S-C(4)H(3)S (2)) with a S-H proton directly interacting with both nickel and sulfur atoms were prepared by reaction of [Ni(CO)(SePh)(3)](-)/[Ni(CO)(2-S-C(4)H(3)S)(3)](-) and P(o-C(6)H(4)SH)(3), individually. The presence of combinations of intramolecular [Ni-S...H-SR]/[Ni...H-SR] interactions was verified in the solid state by the observation of an IR nu(SH) stretching band (2273 and 2283 cm(-)(1) (KBr) for complexes 1 and 2, individually) and (1)H NMR spectra (delta 8.079 (d) (CD(2)Cl(2)) and 8.39 (d) (C(4)D(8)O) ppm (-SH) for complexes 1 and 2, respectively) and subsequently confirmed by X-ray diffraction study. The exo-thiol proton (o-C(6)H(4)SH) in complexes 1 and 2 was identified as a D(2)O exchangeable proton from NMR and IR studies and was quantitatively removed by Lewis base Et(3)N to yield Ni(II) dimer [Ni(II)(P(o-C(6)H(4)S)(3))](2)(2)(-) (5). Instead of the ligand-based oxidation to form dinuclear Ni(II) complexes and dichalcogenide, oxidation of THF-CH(3)CN solution of complexes 1 and 2 by O(2) resulted in the formation of the mononuclear, distorted trigonal bipyramidal [Ni(III)(ER)(P(o-C(6)H(4)S)(3))](-) (ER = SePh (3), 2-S-C(4)H(3)S (4)) accompanied by byproduct H(2)O identified by (1)H NMR, respectively. The 4.2 K EPR spectra of complexes 3 and 4 exhibiting high rhombicities with three principal g values of 2.304, 2.091, and 2.0 are consonant with Ni(III) with the odd electron in the d(z)(2) orbital. Complex 3 undergoes a reversible Ni(III/II) process at E(1/2) = -0.67 V vs Ag/AgCl in MeCN.  相似文献   

5.
The previously synthesised Schiff-base ligands 2-(2-Ph(2)PC(6)H(4)N[double bond, length as m-dash]CH)-R'-C(6)H(3)OH (R'= 3-OCH(3), HL(1); 5-OCH(3), HL(2); 5-Br, HL(3); 5-Cl, HL(4)) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino)aniline with the appropriate substituted salicylaldehyde. HL(1-4) react directly with M(II)Cl(2)(M = Pd, Pt) or Pt(II)I(2)(cod) affording neutral square-planar complexes of general formula [M(II)Cl(eta(3)-L(1-4))](M = Pd, Pt, 1-8) and [Pt(II)I(eta(3)-L(1-4))](M = Pd, Pt, 9-12). Reaction of complexes 1-4 with the triarylphosphines PR(3)(R = Ph, p-tolyl) gave the novel ionic complexes [Pd(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(13-20). Substituted platinum complexes of the type [Pt(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(R = P(CH(2)CH(2)CN)(3)21-24) and [Pt(II)(P(p-tolyl)(3))(eta(3)-L(3,4))]ClO(4)( 25 and 26 ) were synthesised from the appropriate [Pt(II)Cl(eta(3)-L(1-4))] complex (5-8) and PR(3). The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O,N,P donor set together with one further atom which is trans to the central nitrogen atom.  相似文献   

6.
Three new bis(aryl)triazene ligands, Ar-NNNH-Ar' [Ar = o-C(6)H(4)-CO(2)Me, Ar' = p-C(6)H(4)-CH(3) (2); Ar = Ar' = o-C(6)H(4)-CO(2)Me (3); Ar = o-C(6)H(4)-SMe, Ar' = p-C(6)H(4)-CH(3)) (4)], have been synthesized. The reaction of 1-4 with PdCl(2)(NCCH(3))(2) in the presence of a base afforded a series of binuclear diamagnetic palladium complexes. In these reactions, ligands 1-3 afforded the palladium(I) complexes [Pd(I)(o-MeO(2)C-C(6)H(4)-NNN-o-C(6)H(4)-CO(2)Me)](2) (5, monoclinic, space group P21/c, a = 8.6070(10) Angstrom, b = 14.3220(10) Angstrom, c = 12.7310(10) Angstrom, beta = 100.2950(10) degrees, Z = 2), [Pd(I)(o-MeO-C(6)H(4)-NNN-o-C(6)H(4)-OMe)](2) (6, triclinic, space group P, a = 6.6288(5) Angstrom, b = 10.2631(10) Angstrom, c = 11.0246(11) Angstrom, alpha = 85.579(6) degrees, beta = 80.885(6) degrees, gamma = 74.607(6) degrees, Z = 1), and [Pd(I)(o-MeO(2)C-C(6)H(4)-NNN-p-C(6)H(4)-CH(3))](2) (7, tetragonal, space group I41/a, a = 20.866(3) Angstrom, b = 20.866(3) Angstrom, c = 13.156(2) Angstrom, Z = 8). In contrast, the reaction of ligand 4 with PdCl(2)(NCCH(3))(2) resulted in the formation of a palladium(II) dimer, [Pd(II)(o-MeS-C(6)H(4)-NNN-p-C(6)H(4)-CH(3))Cl](2) (8, orthorhombic, space group P2(1)2(1)2, a = 10.4058(5) Angstrom, b = 16.2488(8) Angstrom, c = 9.9500(5) Angstrom, Z = 2).  相似文献   

7.
Nickel(II) complexes of reduced glutathione (GSH) of general composition Na[Ni(L)(X)]H(2)O, where H(2)L=GSH; X=NO(3)(-), SCN(-), CH(3)CO(2)(-), Cl(-) have been synthesized and characterized by elemental analysis, infrared spectra, electronic spectra, magnetic susceptibility measurements, thermal and X-ray powder diffraction studies. Infrared spectra indicate deprotonation and coordination of cysteinyl sulphur and carboxylate oxygen of glycine residue with nickel ions. It indicates the presence of water molecule in all the complexes which has been supported by TG/DTA. The thermal behavior of complexes shows that water molecule is removed in first step-followed removal of anions and then decomposition of the ligand molecule in subsequent steps. General mechanisms describing the decomposition of the solid complexes are suggested. Kinetic and thermodynamic parameters were computed from the thermal decomposition data. The room temperature magnetic moment values for all the complexes lie in the range of 2.2-2.4BM, indicating departure from spin only values due to second order Zeeman effect. The electronic spectra indicate planar coordination geometry for all the complexes. Crystal data for Na[Ni(L)(CH(3)CO(2)(-))]H(2)O: tetragonal, space group P4/m, a=8.2004A, b=8.2004A, c=16.0226A, V=1077.47A(3), Z=2. Crystal data for Na[Ni(L)(Cl(-))]H(2)O: cubic, space group Pm3, a=16.1055A, b=16.1055A, c=16.1055A, V=4178.38A(3), Z=6. Crystal data for Na[Ni(L)(NO(3)(-))]H(2)O: tetragonal, space group P4/m, a=7.2121A, b=7.2121A, c=12.0200A, V=625.22A(3), Z=2.  相似文献   

8.
Two heterotrinuclear complexes, [Mn(II)(Ni(II)L)2].2CH3OH (where H3L = 1,1,1-tris(N-salicylideneaminomethyl)ethane) and [Fe(III)(Ni(II)L)2]NO3.C2H5OH, consisting of three face-sharing octahedra have been prepared; although these complexes have closely related structures and have the same 1-5/2-1 spin system, they show completely different magnetic interactions between the adjacent metal ions: ferromagnetic (Ni(II)-Mn(II)) and antiferromagnetic (Ni(II)-Fe(III)).  相似文献   

9.
New polynuclear nickel trimethylacetates [Ni6(OH)4(C5H9O2)8(C5H10O2)4] (6), [Ni7(OH)7(C5H9O2)7(C5H10O2)6(H2O)] x 0.5 C6H14 x 0.5 H2O (7), [Ni8(OH)4(H2O)2(C5H9O2)12] (8), and [Ni9(OH)6(C5H9O2)12(C5H10O2)4] x C5H10O2 x 3 H2O (9), where C5H9O2 is trimethylacetate and C5H10O2 is trimethylacetic acid, have been found. Their structures were determined by X-ray crystallography. Because of their high solubility in low-polarity organic solvents, compounds 6-9 reacted with stable organic radicals to form the first heterospin compounds based on polynuclear Ni(II) trimethylacetate and nitronyl nitroxides containing pyrazole (L(1)-L(3)), methyl (L(4)), or imidazole (L(5)) substituent groups, respectively, in side chain [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(1))2(H2O)] x 0.5 C6H14 x H2O (6+1a), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L2)2(H2O)] x H2O (6+1b), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(3))2(H2O)] x H2O (6+1c), [Ni6(OH)3(C5H9O2)9(C5H10O2)4(L(4))] x 1.5 C6H14 (6'), and [Ni4OH)3(C5H9O2)5(C5H10O2)4(L(5))] x 1.5 C7H8 (4). Their structures were also determined by X-ray crystallography. Although Ni(II) trimethylacetates may have varying nuclearity and can change their nuclearity during recrystallization or interactions with nitroxides, this family of compounds is easy to study because of its topological relationship. For any of these complexes, the polynuclear framework may be derived from the [Ni6] polynuclear fragment {Ni6(mu4-OH)2(mu3-OH)2(mu2-C5H9O2-O,O')6(mu2-C5H9O2-O,O)(mu4-C5H9O2-O,O,O',O')(C5H10O2)4}, which is shaped like an open book. On the basis of this fragment, the structure of 7-nuclear compounds (7 and 6+1a-c) is conveniently represented as the result of symmetric addition of other mononuclear fragments to the four Ni(II) ions lying at the vertexes of the [Ni6] open book. The 9-nuclear complex is formed by the addition of trinuclear fragments to two Ni(II) ions lying on one of the lateral edges of the [Ni6] open book. This wing of the 9-nuclear complex preserves its structure in another type of 6-nuclear complex (6') with the boat configuration. If, however, two edge-sharing Ni(II) ions are removed from [Ni6] (one of these lies at a vertex of the open book and the other, on the book-cover line), we obtain a 4-nuclear fragment recorded in the molecular structure of 4. Twinning of this 4-nuclear fragment forms highly symmetric molecule 8, which is a new chemical version of cubane.  相似文献   

10.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

11.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

12.
The coordination chemistry of the bidentate P,N hybrid ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine (1) towards Pd(II) and Pt(II) has been investigated. The molecular structures of the complexes [PdCl(2)(1)] and [PtCl(2)(1)] were determined by X-ray diffraction, representing the first crystallographically characterized λ(3)-phosphinine-Pd(II) and -Pt(II) complexes. Both complexes reacted with methanol at the P=C double bond at an elevated temperature, leading to the corresponding products [MCl(2)(1H·OCH(3))]. The molecular structure of [PdCl(2)(1H·OCH(3))] was determined crystallographically and revealed that the reaction with methanol proceeds selectively by syn addition and exclusively to one of the P=C double bonds. Strikingly, the reaction of [PdCl(2)(1H·OCH(3))] with the chelating diphosphine DPEphos at room temperature in CH(2)Cl(2) led quantitatively to [PdCl(2)(DPEphos)] and phosphinine 1 by elimination of CH(3)OH and rearomatization of the phosphorus heterocycle.  相似文献   

13.
Reaction of the deprotonated N-thiophosphorylated thioureas RNHC(S)NHP(S)(OiPr)(2) (R = Ph, HL(I); 2-MeC(6)H(4)-, HL(II); 2,6-Me(2)C(6)H(3)-, HL(III); 2,4,6-Me(3)C(6)H(2)-, HL(IV); Me-, HL(V)) with Ni(II) leads to complexes of the formula [NiL(I-V)(2)]. The molecular structures of the thioureas HL(II-V) and the complexes [NiL(II-V)(2)] in the solid were elucidated by single-crystal X-ray diffraction analysis. In the complexes, the metal is found to be in a square planar trans-N(2)S(2) ([NiL(II-IV)(2)]) environment formed by the C=S sulfur atoms and the P-N nitrogen atoms, or in a square planar trans-S(2)S'(2) ([NiL(V)(2)]) environment formed by the C=S and P=S sulfur atoms of two deprotonated ligands. DFT calculations confirmed that the [Ni(L(II-IV)-N,S)(2)] isomers are more stable (by 16-21 kcal mol(-1)) than the corresponding [Ni(L(II-IV)-S,S')(2)] conformers. The main reason for higher stability of the 1,3-N,S vs. 1,5-S,S' isomers is the formation of intramolecular N-H···S=P hydrogen bonds. In solution the complexes [Ni(L(II-V)-N,S)(2)] have an exclusive 1,3-N,S coordination, while the compound [Ni(L(I)-N,S)(2)] exhibits two isomers in the (1)H and (31)P NMR spectra. The major species is assigned to the 1,3-N,S coordinated isomer, while the minor (~25%) signals are due to the 1,5-S,S' isomer. UV-Vis spectroscopic results are in line with this. The electrochemical measurements reveal reversible one-electron reduction and irreversible oxidations, both assigned to ligand-centred processes.  相似文献   

14.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

15.
Reactions of 3,4-dimethyl-3',4'-bis(diphenylphosphino)tetrathiafulvalene, o-P2, with [BF(4)](-) salts of Fe(ii), Co(ii), Ni(II), Pd(II), and Pt(II) yield complexes of general formula [M(o-P2)(2)][BF(4)](2). Similar reactions between o-P2 and AgSbF(6) or AgPF(6) produced the salts [Ag(o-P2)(2)][X] where X = [SbF(6)](-) or [PF(6)](-). The resulting compounds were fully characterized by (1)H and (31)P{(1)H} NMR, infrared and electronic absorption spectroscopies, cyclic voltammetry, FAB-MS and single-crystal X-ray diffraction. The paramagnetic Co(II) compound exhibits an S = 3/2 state with large spin-orbit coupling contribution at higher temperatures and an effective S' = 1/2 state below 20 K. Electrochemical studies of the compounds indicate that the two functionalized TTF ligands are not in electronic communication and that they essentially behave as isolated redox centers.  相似文献   

16.
The ionic multicomponent complex complex: ([Cr(I)(PhH)(2)].+))(2)[Co(II)TPP(C(60)(CN)(2))]-[C(60)(CN)(2)](.-).3(o-C(6)H(4)Cl(2)) (Co(II)TPP: cobalt (II) tetraphenylporphyrin; Cr(PhH)(2): bis(benzene)chromium; o-C(6)H(4)Cl(2): o-dichlorobenzene) containing CoTPP(C(60)(CN)(2)- anion and C(60)(CN)(2).- radical anion was obtained. The complex has the cage structure with channels, which accommodate Cr(I)(PhH)(2)(.+) and o-C(6)H(4)Cl(2) molecules. For the first time the sigma-bonding of Co(II)TPP to the fullerene radical anion with the essentially shortened Co.C(C(60)(CN)(2)) contact of 2.282 A is observed. The sigma-bonding results in the diamagnetism of Co(II)TPP(C(60)(CN)(2))(-) anion. The nonbonded C(60)(CN)(2)(.-) radical anion retains both the C(2)(v)symmetry and the shape of the molecule. The length of the C(triple bond)N bonds is 1.141 and 1.152 A.  相似文献   

17.
Two new polynuclear complexes [Ni6(amox)6(mu6-O)(mu3-OH)2](Cl2).6H2O and [Cu3(amox)3(mu3-OH)(mu3-Cl)](ClO4).4H2O (amox- = anion of 4-amino-4-methyl-2-pentanone oxime) have been synthesized and characterized structurally and magnetically. The Ni(II) complex contains a novel Chinese-lantern-like Ni6 cage centered by an oxo ion. It contains the nearest octahedral Ni(II)...Ni(II) separation (<2.8 A) and exhibits strong antiferromagnetic properties. The Cu(II) complex has a cyclic trinuclear copper(II) core bridged by both mu3-OH(-) and mu3-Cl(-) ions. The magnetic susceptibilities of both antiferromagnetic complexes were fitted by using approximate models.  相似文献   

18.
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1?:?1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) ?; R = Ph: d(Te-O) = 2.1849(14) ?). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1?:?1 and 1?:?2 Te?:?L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(iv) halides chalcogenoether complexes are discussed.  相似文献   

19.
Three new centrosymmetric trinuclear nickel(II) and manganese(II) complexes, Ni[Ni(CH(3)COO)(CPA)](2) (1), Ni[Ni(CH(3)COO)(BPA)](2) (2), Mn[Mn(CH(3)COO)(BPA)](2) (3), where H(2)CPA = N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine, H(2)BPA = N,N'-bis(5-bromosalicylidene)-1,3-propanediamine, and two new centrosymmetric dinuclear zinc(II) complexes, [Zn(2)(CMP)(2)] (4) and [Zn(2)(BMP)(2)] (5), where H(2)CMP = 4-chloro-2-{[3-(5-chloro-2-hydroxybenzyl)aminopropylimino]methyl}phenol, and H(2)BMP = 4-bromo-2-{[3-(5-bromo-2-hydroxybenzyl)aminopropylimino]methyl}phenol, have been prepared from the Schiff bases derived from 5-halido-substituted salicylaldehydes with N-hexylpropane-1,3-diamine under solvothermal conditions. The complexes have been characterised by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction studies. The complexes 1, 2, and 3 crystallise in the monoclinic space group P2(1)/c with cell dimensions a = 9.347(1), b = 11.507(2), c = 18.539(2) ?, β = 93.774(2)°, Z = 2 (for 1), a = 9.111(4), b = 12.089(6), c = 18.724(8) ?, β = 92.117(7)°, Z = 2 (for 2), and a = 11.328(2), b = 22.468(5), c = 8.270(2) ?, β = 93.74(3)°, Z = 2 (for 3), while complexes 4 and 5 crystallise in the triclinic space group P1, with cell dimensions a = 7.483(1), b = 9.990(2), c = 12.155(2) ?, α = 75.27(3), β = 85.00(3), γ = 73.82(3)°, Z = 1 (for 4), and a = 7.008(1), b = 10.081(2), c = 13.095(3) ?, α = 100.62(3), β = 95.51(3), γ = 104.03(3)°, Z = 1 (for 5). It is interesting that the mono-Schiff bases 4-chloro-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HCCP) and 4-bromo-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HBCP) used to prepare the nickel(II) and manganese(II) complexes were transferred to bis-Schiff bases H(2)CPA and H(2)BPA in the complexes 1, 2, and 3, while the mono-Schiff bases HCCP and HBCP used to prepare the zinc(II) complexes were transferred to novel ligands H(2)CMP and H(2)BMP, bearing the unexpected, newly formed carbon-nitrogen single bond.  相似文献   

20.
The dithiosalicylidenediamine Ni II complexes [Ni(L)] (R=tBu, R'=CH2C(CH3)2CH2 1, R'=C6H4 2; R=H, R'=CH2C(CH3)2CH2 3, R'=C6H4 4) have been prepared by transmetallation of the tetrahedral complexes [Zn(L)] (R=tBu, R'=CH2C(CH3)2CH2 7, R'=C6H4 8; R=H, R'=CH2C(CH3)2CH2 9, R'=C6H4 10) formed by condensation of 2,4-di-R-thiosalicylaldehyde with diamines H2N-R'-NH2 in the presence of Zn II salts. The diamagnetic mononuclear complexes [Ni(L)] show a distorted square-planar N2S2 coordination environment and have been characterized by 1H- and 13C NMR and UV/Vis spectroscopies and by single-crystal X-ray crystallography. Cyclic voltammetry and coulombic measurements have established that complexes 1 and 2, incorporating tBu functionalities on the thiophenolate ligands, undergo reversible one-electron oxidation processes, whereas the analogous redox processes for complexes 3 and 4 are not reversible. The one-electron oxidized species, 1+ and 2+, can be generated quantitatively either electrochemically or chemically with 70 % HClO4. EPR and UV/Vis spectroscopic studies and supporting DFT calculations suggest that the SOMOs of 1+ and 2+ possess thiyl radical character, whereas those of 1(py)2 + and 2(py)2 + possess formal Ni III centers. Species 2+ dimerizes at low temperature, and an X-ray crystallographic determination of the dimer [(2)2](ClO4)2.2 CH2Cl2 confirms that this dimerization involves the formation of a S-S bond (S...S=2.202(5) A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号