首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The effects of the concentration of a number of dyes in an aqueous solution and of the method of formation of mixed nanostructures of dyes and Eu(MBTA)3phen (MBTA is p-methoxybenzoyltrifluoroacetone; phen is 1,10-phenanthroline) complexes that form these structures on the luminescence decay kinetics of Eu(III) ions are studied. It is shown that, in the concentration range 5–50 nM of Nile blue, the concentration dependences of the luminescence decay and of the decrease in τ lum of Eu(III) nearly coincide and are nearly linear. The dependence of the ratio of I lum of Eu(III) to the intensity of the sensitized delayed fluorescence of Nile blue on the delay time of the probe pulse is analyzed; it is found that the majority of dye molecules incorporated in nanostructures of Eu(MBTA)3phen complexes emit sensitized delayed fluorescence with times 1–50 μs. Analysis of the effect of the structure of nanostructures on the quenching of I lum of Eu(III) by the dye at different concentrations of Eu(III) shows that nanostructures of Eu(MBTA)3phen and Eu(NTA)3phen (NTA is 2-naphthoyltrifluoroacetone) complexes appear in the aqueous solution at a concentration of Eu(III) of 0.1 μM (the MBTA or NTA concentration is 50 μM, and the concentration of phen is 17 μM) and exist in the solution at the Eu(III) concentrations up to ~5 μM. This confirms the conclusion on the occurrence range of nanostructures of Ln complexes previously made based on the analysis of columinescence in these structures.  相似文献   

2.
The monitoring of variations in the luminescence intensity (I lum) of nanostructures of Eu(MBTA)3phen (MBTA is p-methoxybenzoyl trifluoroacetonate) complexes formed in aqueous solutions upon the introduction of anions is proposed as a method of analyzing the composition of Eu(III), Gd(III) and Lu(III) phosphate complexes in solutions with [PO 4 3? ] < [Ln]. It is found that low-lability binuclear complexes, which rearrange within an hour or longer, are formed in these solutions. It is shown that the lability of Ln(III) carbonate complexes exceeds the lability of Ln(III) complexes with PO 4 3? . An analysis of the dependence of I lum of the solution on the concentration of Eu(III) ions and on the time from the instant of the solution preparation shows that, in aqueous solutions where the concentration of anions is higher than the concentration of Ln(III) ions, nanostructures of Eu(III) phosphate and carbonate salts are formed in the range of Ln(III) concentrations 0.5–5 μM at concentrations of anions on the order of 10 μM and at concentrations of exceeding 100 μM. The rearrangement of these nanostructures to nanostructures of Eu(MBTA)3phen complexes is studied.  相似文献   

3.
We study the regular features of the behavior of the intensity I lum and the luminescence decay time τ lum of complexes of Eu and Tb ions with several β-diketones and 1,10-phenanthroline in the case where these complexes from nanostructures with complexes of lanthanide ions that are electronic excitation acceptors of these Eu and Tb ions. The composition of mixed nanostructures formed in a solution is shown to depend on the method of their preparation, on the ability of complexes to form mixed rather than homogeneous nanostructures, and on the concentration of complexes in the solution. We reveal that complexes of Yb, Tm, and Dy ions simultaneously increase I lum and τ lum of Eu complexes due to energy transfer through ligands of complexes and decrease the value of these quantities for Eu complexes due to energy transfer from Eu(III) ions to ions of Yb, Tm, and Dy. For all interacting complexes, the changes in I lum and τ lum of complexes of Eu (Tb) in the presence of complexes, energy acceptors, are shown to be determined by competition between two processes: a decrease in these quantities due to energy transfer between ions and their increase caused by an increase in the probability of nonradiative transitions in Eu (Tb) ions due to an increase in the size of structures. We propose a method of separation of these two processes.  相似文献   

4.
The formation of nanostructures that consist of complexes of β-diketones with 1,10-phenanthroline and involve dyes of the polymethine, triphenylmethane, oxazine, and xanthene series is observed in aqueous solutions. It is found that nanostructures of complexes of Ln(III) ions and dyes are reliably observed at concentrations of Ln complexes from 0.5 to 5 μM and at dye concentrations above 5 nM. Nanostructures of complexes Eu(MBTA)3phen, Eu(NTA)3phen, Eu(PTA)3phen, Tb(PTA)3phen, Gd(MBTA)3phen, and Lu(MBTA)3phen with dyes are studied, where MBTA is n-methoxybenzoyltrifluoroacetone, NTA is naphthoyltrifluoroacetone, PTA is pivaloyltrifluoroacetone, and phen is 1,10-phenanthroline. It is shown that nanostructures formed can contain dye molecules not only inside a nanostructure of Ln complexes but also on its outer shell. It is proved that, at a dye concentration in the solution of the order of nanomole or higher, the formation of mixed nanostructures of Eu complexes and dyes whose S 1 level is below the 5 D 0 level of Eu(III) leads to the quenching of the luminescence of Eu(III) and gives rise to the sensitized luminescence of dyes. The energy transfer efficiency from Eu(III) ions to dye molecules is determined by the ability of these molecules to incorporate into nanostructures of Eu complexes. The effect of the formation of nanostructures on the shape and position of the spectra of luminescence and absorption of dyes is studied. Comparison of the sensitized luminescence intensities of Nile blue in structures of Eu, Lu, and Gd complexes shows that the greater part of the excitation energy of Eu complexes is transferred directly from ions to dye molecules according to the inductive-resonance energy transfer mechanism rather than by means of energy migration over singlet levels of organic ligands in complexes of a nanostructure.  相似文献   

5.
We studied the luminescence intensity (I lum) of the ions Eu(III) and Sm(III) in relation to the concentrations of ions Ln(III) and Al(III) in water at pH 7 at an excess of such beta-diketones as p-methoxybenzoyltrifluoroacetone (MBTA), dibenzoylmethane (DBM), and tenoyltrifluoroacetone (TTA) and in the presence of 1,10-phenanthroline (phen) used as a synergistic agent. Both the enhancement of I lum (Eu(III)) upon addition of Gd(III) (co-luminescence) and the effect of the third ion are found to depend on the order of addition of the ions to the solution and, therefore, on the sequence of formation of nanostructures of complexes of these ions in the solution, in which the transfer of the triplet energy of the organic part of complexes takes place, leading to an enhancement in I lum (Eu(III)). The intensity I lum (Eu(III)) is shown to increase equally rapidly upon addition of either Gd(III) or Al(III) to solutions with DBM + phen. In solutions of all the three beta-diketones studied, the Eu(III) ions incorporate better into nanostructures of triply charged ions whose radius is similar to or smaller than the radius of the Eu(III) ions. Our study of the effect that the replacement of H2O with D2O exerts of I lum of 5 × 10?8 M Eu(III) at different concentrations of ligands shows that, at [Ln(III)] < [OH?] and at a concentration of beta-diketones smaller than 3 × 10?5 M, the deuteration affects I lum(Eu(III)) and, therefore, the first coordination sphere of Eu(III) contains OH groups. It is shown that, in aqueous solutions with 3 × 10?5 M TTA + 10?5 M phen, the increase in I lum(Eu(III)) caused by the introduction of Gd(III) ions results from two processes occurring in the nanostructures of these complexes: the energy transfer from Gd(III) complexes to Eu(III) complexes and the increase of I lum of Eu(III) itself under the conditions in the solution where the total concentration [Ln] ? [OH?] and both the photochemical deactivation of Eu(III) and the exchange of its excitation energy for vibrations of the OH groups are suppressed. The reliability of the size estimation of nanostructures of metal complexes is discussed in terms of the effect of these nanostructures on I lum of chelates of Eu(III).  相似文献   

6.
The luminescence decay times τlum of the complexes of the ions Tb(III), Eu(III), Sm(III), Dy(III), and Yb(III) with dipicolinic acid (DPA) dissolved in protonated and deuterated water, methanol, and dimethyl sulfoxide are measured. The values of τlum for crystals H3[Ln(DPA)3nH2O and their aqueous solutions coincide, which points to the identity of the environment in the nearest spheres of an ion in both cases. A comparison of τlum of solutions of the complexes in H2O and D2O, as well as in CH3OH, CH3OD, CD3OD, DMSO-h 6, and DMSO-d 6 shows that the molecular groups in the second and third spheres of an ion, exhibiting high-frequency vibrations, have a noticeable effect on the rate constants of nonradiative transitions k nr in the ion. From this comparison, some inferences on the structure of the solvate shell of the Ln(DPA) 3 3? complexes in the solvents used are made. The contributions to k nr of Eu(III), Tb(III), Sm(III), Dy(III), Nd(III), and Yb(III) made by OH and CH groups located at different distances from the ion are estimated. It is demonstrated that the dependence of k nr on the distance to the OH and CH groups is steeper for the Eu(III) and Tb(III) ions than for the remaining ions.  相似文献   

7.
The intensity I lum and lifetime τlum of the luminescence of complexes of Eu(III) and Tb(III) ions with β-diketones and o-phenanthroline in water-ethanol solutions of these ligands have been analyzed as functions of the concentrations of ligand, luminescing lanthanide ions, and added ions causing columinescence and of the solvent deuteration. It is shown that the formation of nanostructures from Ln complexes and their coarsening leads to an increase in τlum of Eu(III) and Tb(III) and that this increase is due to the suppression of both photochemical deexcitation of these ions and transfer of their electronic excitation energy to OH vibrations of water molecules. The disappearance of the dependence of I lum of Eu(III) on deuteration of water-ethanol solutions of n-methoxybenzoyltrifluoracetone + o-phenanthroline caused by adding Gd(III) ions is explained by the shift of the equilibrium of formation of complexes of Ln chelates to neutral hydrophoblic forms corresponding to the formation of nanostructures of these chelates in the solution. The differences in effect of La(III) and Gd(III) ions on I lum and τlum of Eu(III) and Tb(III) complexes are explained. It is shown that the widely discussed effect of columinescence not only results from the energy migration in mixed structures of Eu or Tb complexes and Gd complexes but is also due to a large extent to the decrease in τlum of Eu(III) or Tb(III) caused by their incorporation into nanostructures.  相似文献   

8.
The luminescence decay times τlum of the ions Sm(III), Eu(III), Tb(III), and Dy(III) in glacial acetic acid, along with τlum and q lum of these ions in H2O and D2O in the presence of anions CO 3 2? and in their absence, are measured. The number of OH groups (N OH) in the first coordination sphere of these lanthanide ions is determined. It was shown that, for all the ions in acetic acid, N OH≈3, while, in an H2O+2 M Cs2CO3 solution, N OH≈2.5. The experimental data on the influence of the CO 3 2? anions on the rate constant of nonradiative transitions (k nr) in the Eu(III) and Tb(III) ions are compared with calculations of k nr performed in the dipole-dipole approximation of the inductive resonance theory. It is found that such calculations cannot correctly describe the dependence of k nr on N OH. The quadrupole-dipole approximation of this theory was shown to be capable of adequately describing this dependence. The criteria for applying either approximation of the theory to describe experimentally observed dependences of k nr on N OH are discussed.  相似文献   

9.
Langmuir-Blodgett (LB) films of different molar percentages of Eu(TTA)3Phen (TTA=2-thenoyltrifluoroacetone; Phen=1,10-phenanthroline) with Gd(TTA)3Phen coexisting with arachidic acid (AA) (complexes:AA=1:l, in molar ratio) were fabricated and the luminescence enhancement of Eu(III) in the films was studied in this investigation. The monolayers and LB films were characterized by π-A isotherms, fluorescence microscopy, UV-vis spectroscopy and low-angle X-ray diffraction. High-quality LB films and strongly luminescent films were obtained. It was learned from the present study that an efficient intermolecular energy transfer occurred from Gd(TTA)3Phen to Eu(TTA)3Phen in the films, which resulted in the luminescence enhancement effect. According to the proposed model of the “active enhancement circle” the distance of energy transfer from Gd-, Tb-, La-, and Y-complex to Eu-complex were calculated to be 1.2, 1.2, 0.7 and 1.0 nm, respectively.  相似文献   

10.
倪亚茹  徐程  陆春华  许仲梓 《光子学报》2014,39(8):1424-1430
为了提高稀土有机配合物的转光能力和紫外稳定性,以Sm(Ⅲ)为中心稀土离子,Tb为敏化离子,β-二酮类有机配体α-噻吩甲酰三氟丙酮(HTTA)及第二配体1,10-菲咯啉(phen)等作为主要配体,采用化学沉淀法合成了具有紫外转红光性能的转光剂Sm1-xTbx(TTA)3phen,并利用SiO2对配合物进行了表面改性.借助红外光谱、紫外-可见光吸收光谱及荧光光谱对配合物Sm1-xTbx(TTA)3phen的光学性能进行了系统分析.结果表明:Sm1-xTbx(TTA)3phen与Sm(TTA)3phen的配位结构基本一致|配合物的紫外光吸收特性主要由有机配体决定|配合物吸收紫外光后,均可产生Sm3+的特征光,其中Sm0.5Tb0.5(TTA)3phen在647 nm处的荧光强度最高,达到8.0×106 cps,光转换能力最强|敏化离子Tb3+的掺入可以显著提高配合物的荧光强度|配合物经二氧化硅包裹后,其紫外稳定性明显提高.  相似文献   

11.
The mechanism of columinescence (fluorescence sensitization) of dyes incorporated in nanostructures of metal complexes is studied. It is shown for the first time that the columinescence of dyes is due to the transfer of excitation energy from ligands and metal ions of complexes that form nanostructures. It is proven that the dye columinescence of rhodamine 6G (R6G) molecules incorporated into nanostructures of Al(DBM)3phen, Al(DBM) n (OH)6 ? 2n , and Eu(DBM)3phen (DBM is dibenzoylmethane) nanostructures is completely determined by the singlet excitation energy migration from ligands to R6G molecules. It is shown that, at small concentrations of R6G, the R6G columinescence intensity is lower in nanostructures of metal complexes with a high probability of S-T conversion and that this difference disappears at large concentrations of R6G. In the case of Nile blue (whose S 1 level lies below the 5 D 0 level of Eu(III)) incorporated in nanostructures of Eu(DBM)3phen complexes, as well as in nanostructures of Al(DBM)3phen and Gd(DBM)3phen complexes with admixture of Eu complexes, we observed the S-S energy transfer from DBM to NB in addition to the delayed sensitized fluorescence of NB previously observed in nanostructures of Eu complexes, which was caused by the energy transfer from the 5 D 0 level of Eu(III) to NB. At dye concentrations below 100 nM, the efficiency of NB sensitization due to the migration of singlet excitation energy from DBM is lower than in the case of the energy transfer from Eu(III) ions, while, at large concentrations of the dye, the S-S energy transfer successfully competes with the sensitization of NB by Eu(III) ions. The use of dye columinescence makes it possible to easily determine dye concentrations of 2–100 nM in solutions with standard spectrofluorimeters.  相似文献   

12.
Synthesis and photoluminescence behaviour of six novel europium complexes with novel β-hydroxyketone ligand, 2-(4-chlorophenyl)-1-(2-hydroxy-4-methoxyphenyl)ethan-1-one (CHME) and 2,2′-bipyridine (bipy) or neocuproine (neo) or 1,10-phenanthroline (phen) or 5,6-dimethyl-1,10-phenanthroline (dmphen) or bathophenanthroline (bathophen) were reported in solid state. The free ligand CHME and europium complexes, Eu(CHME)3.2H2O [1] Eu(CHME)3.bipy [2], Eu(CHME)3.neo [3], Eu(CHME)3.phen [4], Eu(CHME)3.dmphen [5] and Eu(CHME)3.bathophen [6]were characterized by elemental analysis, FT-IR and 1H-NMR. The photoluminescence emission spectra exhibited four characteristic peaks arising from the 5D0 → 7FJ (J = 1–4) transitions of the europium ion in the solid state on monitoring excitation at λex = 395 nm. The luminescence decay curves of these europium complexes possess single exponential behaviour indicating the presence of a single luminescent species and having only one site symmetry in the complexes. The luminescence quantum efficiency (η) and the experimental intensity parameters, Ω 2 and Ω 4 of europium complexes have also been calculated on the basis of emission spectra and luminescence decay curves. In addition, the antimicrobial and antioxidant activities were also studied of the investigated complexes.  相似文献   

13.
We studied sensitization of Eu(III) and Tb(III) ions by molecules of 1,10-phenanthroline and 2,2-bipyridil in D2O and d 6-ethanol and the influence of Nd(III), Pr(III), Sm(III), Gd(III), and Ho(III) ions on the luminescence intensity I lum and lifetime τlum of Eu(III) and Tb(III) in solutions. The stability constants of complexes of Eu(III) and Gd(III) with 2,2′-bipyridil are measured by spectrophotometric and luminescence methods. It is shown that luminescence of Eu(III) is quenched by Gd(III) ions at the ion concentration equal to 10?2–10?1 M, which is caused by competing between these ions for a sensitizer. At the concentration of Ln(III) ions equal to 10?6?10?3 M, the sensitized luminescence of Eu(III) and Tb(III) was quenched and τlum decreased in the presence of Nd(III) ions, whereas in the presence of Gd(III) the luminescence intensity increased. It is proved that a bridge that connects the two ions upon energy transfer is formed by hydroxyl groups. The intensity of luminescence of Eu(III) and Tb(III) in aqueous solutions and its lifetime decreased in the presence of hydroxyl groups, while upon addition of Gd(III) to these solutions these quantities were restored. We also found that the addition of Gd(III) to deoxygenated ethanol solutions of 2,2′-bipyridil and Eu(III) slows down photochemical and thermal reactions between bipyridil and Eu(III), resulting in the increase in the luminescence intensity of Eu(III).  相似文献   

14.
Two novel ternary rare earth complexes LnL5L′(ClO4)32H2O (Ln=Eu(III), Tb(III); L=bis(benzoylmethyl) sulfoxide, L′=phen) were synthesized and characterized by elemental analysis, coordination titration analysis, molar conductivity, IR, TG-DSC,1H NMR and UV spectra. The fluorescence spectra illustrated that both the Eu(III) and Tb(III) ternary complexes displayed strong characteristic metal-centered fluorescence in solid state. After the introduction of the second ligand phen group, the relative emission intensities and fluorescence lifetimes of the ternary complex EuL5L′(ClO4)32H2O (L=C6H5COCH2SOCH2COC6H5, L′=phen) enhanced more obviously than that of the binary complex EuL5(ClO4)33H2O. This indicated that the presence of both organic ligands bis(benzoylmethyl) sulfoxide and the second ligand phen could sensitize fluorescence intensities of Eu(III) ions, and the introduction of phen group was resulted in the enhancement of the fluorescence properties of the Eu(III) ternary rare earth complexes. The phosphorescence spectra are also discussed.  相似文献   

15.
Luminescent mixed-ligand Eu(III) complexes with quinaldic acid and nitrogen-containing dimeric ligands are synthesized. The thermal and spectral-luminescent properties of the obtained mixedligand Eu(III) complexes are studied. It is shown that a water molecule and a neutral ligand are detached during thermolysis in two stages with endothermic effects. It is found that the quinaldinate ion is coordinated to a europium(III) ion in a bidentate fashion. The Stark structure of the 5D0–7F j (j = 0, 1, 2) transitions in the low-temperature luminescence spectra of europium(III) complexes is analyzed.  相似文献   

16.
The photoluminescence properties of three Tb(III) complexes of the form [Tb2(fod)6(μ-bpm)], [Tb(fod)3(phen)] and [Tb(fod)3(bpy)] and optical absorption properties of their Ho(III) analogues (fod=anion of 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm=2,2′-bipyrimidine, phen=1,10-phenanthroline and bpy=2,2′-bipyridyl) in a series of solvents are presented. The luminescence of the complexes is sensitive to changes in environment (ligand/solvent) around Tb(III) and co-sensitization of the ancillary ligands. The enhancement of the luminescence intensity in coordinating solvents is attributed to the transformation of eight-coordination into less symmetric nine-coordination structure around Tb(III). Among phen and bpy, the phen is better co-sensitizer while bpm has been observed as poor co-sensitizer. The enhancement of the oscillator strength of 5G65I8 hypersensitive transition in the 4f-4f absorption in some coordinating solvents is attributed to decrease in the symmetry of the field around Ho(III) ion. The [Ho(fod)3(phen)] is inert towards the solvents and retains its bulk structure and composition in solution. The transformation of the holmium complexes in DMSO into [Ho(fod)3(DMSO)2] species is found. The results reveal that the luminescence and 4f-4f absorption properties of lanthanide complexes in solution can be modulated by tuning the coordination structure through ancillary ligands and donor solvents.  相似文献   

17.
以对苯二甲酸(p-PA)、苯甲酸(BA)、邻(间、对)甲基苯甲酸[o(m、p)-MBA]和1,10-邻菲啰啉(phen)为配体,合成了4种Eu(Ⅲ)和4种Tb(Ⅲ)的四元配合物。通过EDTA配位滴定分析和元素分析,确定了各配合物的组成。利用红外光谱分析对配合物的结构进行了初步表征,在配合物中羧基氧原子和1,10-邻菲啰啉中的氮原子均参与了配位。在室温条件下,测定了各固体配合物的激发和发射光谱,结果表明:4种铕的四元配合物中,苯甲酸配合物在614 nm最强发射峰的荧光强度强于3种甲基取代苯甲酸配合物的荧光强度;4种铽的四元配合物中,以对甲基苯甲酸为配体的配合物在545 nm最佳发射峰和490 nm次强发射峰的荧光强度较高。  相似文献   

18.
Novel red emitting organic luminescent complexes, namely Eu0.5Ln0.5(TTA)3 Phen (Eu: europium, Ln: Y/Tb, Y: yttrium, Tb: terbium, TTA: thenoyl tri fluoro acetone, Phen: phenanthroline) were synthesized by solution technique, maintaining stoichiometric ratio. These complexes were characterized by various techniques such as XRD, optical absorption and photoluminescence (PL) spectra. Electroluminescence cells were designed by sandwiching Eu0.5Ln0.5(TTA)3Phen between indium tin oxide (ITO) and aluminum (Al). Voltage?current characteristics and voltage?brightness characteristics of the developed electroluminescent cell were carried out. Turn on voltage of both the devices was found to be 9 V. These devices emit intense red emission at 611 nm, proving their potential applications as organic light emitting diodes and displays.  相似文献   

19.
共掺杂稀土配合物Tb0.5Eu0.5(TTA)3Dipy发光性质的研究   总被引:4,自引:1,他引:3  
以TTA为TTA配体合成了新的共掺杂稀土配合物Tb0.5 s Eu0.5(TTA)3 Dipy,通过与PVK的掺杂,分析了PVK 和Tb0.5Eu0.5(TTA)3Dipy之间的能量传递过程,并且制备了以PVK:Tb0.5Eu0.5(TTA)3Dipy为发光层的结构为ITO/PVK:Tb0.5 Eu0.5(TTA)3 Dipy/PBD/Al的发光器件,通过改变两者之间的质量比,得到了较纯的Eu3 的红色发光.通过与PVK:Eu(TTA)3混合体系的比较,发现Tb3 的引入,起到了能量传递桥梁的作用,提高了PVK 到Eu3 的能量传递,从而抑制了PVK 的发光.因此,通过引人适当的第二种金属离子,会增强另一稀土离子的发光,是作者提高稀土离子发光效率的一种有效的手段.  相似文献   

20.
稀土配合物-PAA-g-PE膜的荧光光谱   总被引:11,自引:0,他引:11  
通过紫外光接枝聚合反应 ,将丙烯酸 (AA)接枝于PE膜表面 ,在一定 pH值条件下 ,使接枝膜与Eu3+、α 噻吩甲酰三氟丙酮 (TTA)的乙醇 水溶液或Tb3+、乙酰丙酮 (AcAc)的氯仿 水溶液作用 ,制得红色或绿色荧光膜。与相应的Eu(TTA) 3·(H2 O) 2 或Tb(AcAc) 3·(H2 O) 2 固态配合物相比 ,荧光膜的激发和发射光谱都发生了明显的变化 ,可以推测 ,稀土配合物与高分子材料之间发生了化学键结合。此外 ,还对荧光膜的红外光谱进行了观察。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号