首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution variable-energy photoelectron spectra of M(CO)5X [M = Re, X = Re(CO)5, Cl, Br, and I; and M = Mn, X = Mn(CO)5 and Br] are reported. Tunable synchrotron radiation is used to distinguish the Re 5d and Br 4p orbital based peaks for the controversial Re(CO)5Br. Our results provide firm molecular orbital assignments for all of these molecules. The valence orbital in the ordering of ionization energies for M(CO)5Cl (M = Mn and Re) and Mn(CO)5Br is a 1(M-X) > e(X) > b2(M) > e(M); but for M(CO)5I (M = Mn and Re) and Re(CO)5Br the ordering is a1(M-X) > e(M) > b2(M) > e(X). The crossover of the HOMO in the Re molecules due to the change in the halogen electronegativities occurs at Re(CO)5Br. The metal np-->nd resonance is observed for all of these molecules. For molecules like M2(CO)10 (M = Re and Mn) and Mn(CO)5Br, the observation of this np-->nd resonance is useful in assigning the metal nd based orbitals in their valence level spectra. However, for molecules like Re(CO)5X (X = Br and Cl), a np-->nd type resonance is observed on bands arising from both Re 5d and halogen mp based orbitals. This new resonant effect on the ligand-based orbitals is shown to be mainly due to the interatomic resonant effect. The core and valence level chemical shifts of these compounds are treated using Jolly's approach to confirm the assignments for the valence level spectra of some of these molecules. The high-resolution inner valence and core level spectra of these compounds are reported. Broadening of Re 4f, Br 3d, and I 4d core level spectra is discussed. The Auger peaks are observed in the high-resolution, high-intensity Br 3d of Re(CO)5Br and I 4d of Re(CO)5I spectra.  相似文献   

2.
The valence photoelectron spectra of Re(CO)(5)X (X=Cl, Br, and I) are studied theoretically using symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theory. The relativistic effects are included by the third-order Douglas-Kroll (DK3) method, and the spin-orbit coupling is also considered. Both electron correlation and relativistic effects are significant in assigning the valence photoelectron spectra of Re(CO)(5)X (X=Cl, Br, and I). DK3-SAC/SAC-CI provides values for the relative peak positions in a reasonable agreement with the observed photoelectron spectra. The sequence of ionization energies for Re(CO)(5)Cl, Re(CO)(5)Br, and Re(CO)(5)I are calculated as e(')[a(1)(Cl)]>e(')[e(Re+Cl)] approximately e(")[e(Re+Cl)]>e(")[b(2)(Re)]>e(')[e(Re-Cl)]>e(")[e(Re-Cl)], e(')[a(1)(Br)]>e(')[e(Re+Br)]>e(")[e(Re+Br)+b(2)(Re)]>e(")[b(2)(Re)+e(Re+Br)]>e(')[e(Re-Br)]>e(")[e(Re-Br)], and e(')[e(Re+I)+a(1)(I)]>e(")[b(2)(Re)+e(Re+I)] approximately e(')[a(1)(I)+e(Re+I)]>e(")[e(Re+I)+b(2)(Re)]>e(')[e(Re-I)]>e(")[e(Re-I)], respectively. These assignments are quite new and different from previous assignments.  相似文献   

3.
The reactions of ammonia, pyridine (py), N-methyl imidazole (N-MeIm), tetrahydrothiophene (tht), and piperidine (pip) with Re(CO) 3(H 2O) 3 (+), 1 ( + ), were investigated employing aqueous conditions under atmospheric dioxygen. The reaction of [ 1]Br in aqueous ammonia led to [Re(CO) 3(NH 3) 3]Br ([ 2]Br) as the only product isolated. For the aqueous reactions of [ 1]Br with py, N-MeIm, and tht, mixtures of products are formed because of competition between the bromide and added ligand, even when the ligand is present in excess. Substitution of the PF 6 (-) anion for Br (-) leads to the clean formation of [Re(CO) 3L 3][PF 6] ([ 3][PF 6]-[ 5][PF 6]) for py, N-MeIm, and tht, respectively, as the only products observed. Reaction of [ 1][PF 6] with pip produces the dimeric species, (pip)(CO) 3Re(micro-OH) 2Re(CO) 3(pip), 6. Reactions of [ 1]Br were also performed in methanol for comparison purposes. The reaction with pip in this solvent led to the analogous dimer, (pip)(CO) 3Re(micro-OMe) 2Re(CO) 3(pip), 7; however, reactions with py, N-MeIm, and tht gave Re(CO) 3L 2Br, 8- 10, respectively, as the only products. The crystal structures of compounds [ 2]Br- 10 are reported.  相似文献   

4.
The reaction between (1-acetyl)pyrene and dimethylformamide dimethylacetal followed by condensation of the resulting product mixture with hydrazine affords 3(5)-(1-pyrenyl)pyrazole (2) in good yield. The easily separable bis[(1-pyrenyl)pyrazole]methane derivatives CH(2)(3-pz(pyrene))(2) (3a, pz = pyrazolyl ring) and CH(2)(3-pz(pyrene))(5-pz(pyrene)) (3b) were prepared by metathetical reactions between pyrazole and CH(2)Cl(2), while CH((n)()Pr)(pz(pyrene))(2) (4) was prepared by transamination of 2 with butyraldehyde diethylacetal. Compounds 2-4 are luminescent under irradiation with UV light and have pyrenyl monomer-based emissions centered near 400 nm. Compounds 3a and 4 each react with Re(CO)(5)Br in a 1:1 molar ratio to form highly insoluble complexes Re(CO)(3)Br[(pz(pyrene))(2)CH(2)] (5) and Re(CO)(3)Br[(pz(pyrene))(2)CH((n)()Pr)] (6). Complex Re(CO)(3)Br[(pz)(2)CMe(2)] (7) was also prepared. X-ray structural studies of 6 show extensive pi-stacking of pyrenyl groups to form two-dimensional sheets. Pulsed field gradient spin-echo NMR (PGSE-NMR) experiments show that the complexes are monomeric in tetrachloroethane. Variable-temperature, difference NOE and 2-D NMR experiments demonstrate that isomers are present in solution that differ by restricted rotation about the pyrazolyl-pyrenyl bond. The pyrenyl-based emissions centered near 400 nm are quenched by complexation to the Re(CO)(3)Br moiety in 5 and 6.  相似文献   

5.
Seven discrete sugar-pendant diamines were complexed to the {M(CO)(3)}(+) ((99m)Tc/Re) core: 1,3-diamino-2-propyl beta-D-glucopyranoside (L(1)), 1,3-diamino-2-propyl beta-D-xylopyranoside (L(2)), 1,3-diamino-2-propyl alpha-D-mannopyranoside (L(3)), 1,3-diamino-2-propyl alpha-D-galactopyranoside (L(4)), 1,3-diamino-2-propyl beta-D-galactopyranoside (L(5)), 1,3-diamino-2-propyl beta-(alpha-D-glucopyranosyl-(1,4)-D-glucopyranoside) (L(6)), and bis(aminomethyl)bis[(beta-D-glucopyranosyloxy)methyl]methane (L(7)). The Re complexes [Re(L(1)-L(7))(Br)(CO)(3)] were characterized by (1)H and (13)C 1D/2D NMR spectroscopy which confirmed the pendant nature of the carbohydrate moieties in solution. Additional characterization was provided by IR spectroscopy, elemental analysis, and mass spectrometry. Two analogues, [Re(L(2))(CO)(3)Br] and [Re(L(3))(CO)(3)Br], were characterized in the solid state by X-ray crystallography and represent the first reported structures of Re organometallic carbohydrate compounds. Conductivity measurements in H(2)O established that the complexes exist as [Re(L(1)-L(7))(H(2)O)(CO)(3)]Br in aqueous conditions. Radiolabelling of L(1)-L(7) with [(99m)Tc(H(2)O)(3)(CO)(3)](+) afforded in high yield compounds of identical character to the Re analogues. The radiolabelled compounds were determined to exhibit high in vitro stability towards ligand exchange in the presence of an excess of either cysteine or histidine over a 24 h period.  相似文献   

6.
Tridentate ligands derived from benzimidazole, quinoline, and tryptophan have been synthesized, and their reactions with [NEt4]2[Re(CO)3Br3] have been investigated. The complexes 1-4 and 6 and 7 exhibit fac-{Re(CO)3N3} coordination geometry in the cationic molecular units, while 5 exhibits fac-{Re(CO)3N2O} coordination for the neutral molecular unit, where N3 and N2O refer to the ligand donor groups. The ligands bis(1-methyl-1H-benzoimidazol-2-ylmethyl)amine (L1), [bis(1-methyl-1H-benzoimidazol-2-ylmethyl)amino]acetic acid ethyl ester (L2), [bis(1-methyl-1H-benzoimidazol-2-ylmethy)amino]acetic acid methyl ester (L3), [bis(quinolin-2-ylmethyl)amino]acetic acid methyl ester (L4), 3-(1-methyl-1H-indol-3-yl)-2-[(pyridin-2-ylmethyl)amino]propionic acid (L5), 2-[bis(pyridin-2-ylmethyl)amino]-3-(1-methyl-1H-indol-3-yl)propionic acid (L6), and 2-[bis(quinolin-2-ylmethyl)amino]-3-(1-methyl-1H-indol-3-yl)propionic acid (L7) were obtained in good yields and characterized by elemental analysis, 1D and 2D NMR, and high-resolution mass spectrometry (HRMS). The rhenium complexes were obtained in 70-85% yields and characterized by elemental analysis, 1D and 2D NMR, HRMS, IR, UV, and luminescence spectroscopy, as well as X-ray crystallography for [Re(CO)3(L1)]Br (1), {[Re(CO)3(L2)]Br}2.NEt4Br . 8.5H2O (3(2).NEt4Br . 8.5H2O), [Re(CO)3(L4)]Br (4), and [Re(CO)3(L6)]Br (6). Crystal data for C21H19BrN5O3Re (1): monoclinic, P2(1)/c, a = 13.1851(5) A, b = 16.1292(7) A, c = 10.2689(4) A, beta = 99.353(1) degrees , V = 2154.8(2) A3, Z = 4. Crystal data for C56H73Br3N11O18.50 Re2 (3(2).NEt4Br . 8.5H2O): monoclinic, C2/c, a = 34.7760(19) A, b = 21.1711(12) A, c = 20.3376(11) A, beta = 115.944(1) degrees , V = 13464.5(1) A3, Z = 8. Crystal data for C26H21BrN3O5Re (4): monoclinic, P2(1)/c, a = 16.6504(6) A, b = 10.1564(4) A, c = 14.6954(5) A, beta = 96.739(1) degrees , V = 2467.9(2) A3, Z = 4. Crystal data for C27H24BrN4O5Re (6): monoclinic, P2(1), a = 8.7791(9) A, b = 16.312(2) A, c = 8.9231(9) A, beta = 90.030(1) degrees , V = 1277.8(2) A3, Z = 2.  相似文献   

7.
By analogy to the recently described single amino acid chelate (SAAC) technology for complexation of the {M(CO)3}+ core (M = Tc, Re), a series of tridentate ligands containing thiolate and thioether groups, as well as amino and pyridyl nitrogen donors, have been prepared: (NC5H4CH2)2NCH2CH2SEt (L1); (NC5H4CH2)2NCH2CH2SH (L2); NC5H4CH2N(CH2CH2SH)2 (L3); (NC5H4CH2)N(CH2CH2SH)(CH2CO2R) [R = H (L4); R = -C2H5 (L5). The {Re(CO)3}+ core complexes of L1-L5 were prepared by the reaction of [Re(CO)3(H2O)3]Br or [NEt4]2[Re(CO)3Br3] with the appropriate ligand in methanol and characterized by infrared spectroscopy, 1H and 13C NMR spectroscopy, mass spectrometry, and in the case of [Re(CO)3(L2)] (Re-2) and [Re(CO)3(L1)Re(CO)3Br2] (Re-1a) by X-ray crystallography. The structure of Re-2 consists of discrete neutral monomers with a fac-Re(CO)3 coordination unit and the remaining coordination sites occupied by the amine, pyridyl, and thiolate donors of L2, leaving a pendant pyridyl arm. In contrast, the structure of Re-1a consists of discrete binuclear units, constructed from a {Re(CO)3(L1)}+ subunit linked to a {Re(CO)3Br2}- group through the sulfur donor of the pendant thioether arm. The series of complexes establishes that thiolate donors are effective ligands for the {M(CO)3}+ core and that a qualitative ordering of the coordination preferences of the core may be proposed: pyridyl nitrogen approximately thiolate > carboxylate > thioether sulfur > thiophene sulfur. The ligands L1 and L2 react cleanly with [99mTc(CO)3(H2O)3]+ in H2O/DMSO to give [99mTc(CO)3(L1)]+ (99m)Tc-1) and [99mTc(CO)3(L2)] (99mTc-2), respectively, in ca. 90% yield after HPLC purification. The Tc analogues 99mTc-1 and 99mTc-2 were subjected to ligand challenges by incubating each in the presence of 1000-fold excesses of both cysteine and histidine. The radiochromatograms showed greater than 95% recovery of the complexes.  相似文献   

8.
考察了由[Pt_3(CO)_6]_5[NEt_4]_2与Re_2(CO)_(10)共浸或分浸制备的一系列催化剂在接近工业运转的压力下的正庚烷转化反应。以羰基金属原子簇化合物作为前身物制备的Pt-Re/Al_2O_3催化剂的活性、芳构化选择性和稳定性等明显地优于常规的以H_2PtCl_6与HReO_4溶液共浸制备的催化剂。常规Pt-Re/Al_2O_3催化剂的活性和稳定性比Pt/Al_2O_3好,但芳构化选择性降低,若引入Re_2(CO)_(10),则其催化活性、芳构化选择性和稳定性均显著提高。不同方法制备的Pt-Re/Al_2O_3催化剂的活性和稳定性的变化趋势为Pt_5Re_2>Pt_5 Re_2>Pt Re_2>PtRe,表明Pt,Re之间存在相互作用程度的差异。  相似文献   

9.
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group, arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration-dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface. In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].  相似文献   

10.
A new family of heterobifunctional linkers (L1-L9) containing a terminus consisting of a tridentate donor set for coordination of the {M(CO)(3)}(+) core (M = Tc, Re), and a thiol reactive maleimide group has been prepared conveniently and in high yield under Mitsunobu reaction conditions by the coupling of an appropriate alcohol derivative with maleimide. The rhenium complexes [Re(CO)(3)(Lx)]Br (x= 1-9) were prepared in good yields from the reactions of the ligands and (NEt(4))(2)[Re(CO)(3)Br(3)] in refluxing methanol. The ligands and their Re complexes were characterized by (1)H and (13)C NMR, IR, and ESI-MS. Ligand L4 and [Re(CO)(3)(L5)]Br have been structurally characterized by X-ray crystallography. Photoexcitation of solutions of the complexes [Re(CO)(3)(Lx)]Br (x= 4-6) gives rise to intense and prolonged luminescence at room temperature (fluorescence lifetimes of ca. 16 micros). The ligands and their Re complexes react smoothly at the maleimide linker with sulfhydryl groups of peptides and proteins at room temperature in phosphate-buffered saline (PBS, pH 7.4) to form stable thioether bioconjugates. The photoluminescence properties of the labeled conjugates are similar to those of the parent complexes, but with even longer lifetimes. The ligands can also be labeled at room temperature with (99m)Tc to give chemically robust complexes. The corresponding hydrazinonicotinamide derivative N-[5-(6'-hydrazinopyridine-3'-carbonyl)aminopentyl]maleimide (L10) was also prepared. While coupling of L10 to cysteine ethylester and synthesis of the rhenium derivative [ReCl(3)(HYNIC-maleimide)(2)] were successfully accomplished, attempts to couple [ReCl(3)(HYNIC-maleimide)(2)] to glutathione or BSA yielded intractable mixtures.  相似文献   

11.
In this paper, a Re(I) complex of Re(CO)3(Bphen)Br, where Bphen=4,7-diphenyl-1,10-phenanthroline is synthesized, and doped into poly(vinylpyrrolidone) submicron fibers through electrospinning technique. Their morphology, absorption, and emission spectra are investigated in detail. The composite fibers exhibit smooth and uniform morphology on the substrate, with an average diameter of ~800 nm. A bright yellow emission peaking at 543 nm is observed from these composite fibers, and this emission is attributed to the triplet emissive state of Re(CO)3(Bphen)Br. When doped into poly(vinylpyrrolidone) matrix, the emission shows a blue-shift tendency compared with that of bulk sample, correspondingly, the photostability is also largely improved. Detailed analysis suggests that Re(CO)3(Bphen)Br occupies a homogeneous site within poly(vinylpyrrolidone) matrix, and the matrix provides a rigid environment for Re(CO)3(Bphen)Br.  相似文献   

12.
Preparation of Germanium-Manganese-, Germanium-Rhenium- and Tin-Rhenium-Clusters of the Type M2(CO)8[μ-EXM(CO)5]2 (M = Mn, E = Ge, X = Br, I; M = Re, E = Ge or Sn, X = I or Cl, Br, I) The clusters Re2(CO)8[μ-SnXRe(CO)5]2 are prepared by reaction of Re2(CO)10 and SnX2 in a Schlenk-tube under release of pressure (X = Cl, Br, I) or in a sealed glass tube (X = Br, I). As central structural unit a four-membered Re2Sn2 ring has to be assumed. This unit can be opened again by reaction with CO under pressure. X2Sn[Re(CO)5]2, which is also formed during the preparation of the clusters in dependance of the CO-pressure, indicates insertion of SnX2 into the Re—Re bond to be the primary step. The corresponding clusters M2(CO)8[μ-GeXM(CO)5]2 (M = Mn, X = Br, I; M = Re, X = I) are prepared by reaction of GeI2 and M2(CO)10 or of I2Ge[Mn(CO)5]2 and Mn2(CO)10 or of Br3GeMn(CO)5 and BrMn(CO)5. Ir frequencies of the new clusters are assigned.  相似文献   

13.
Reaction of aminophosphinimine [RHN(CH(2))(2)N[double bond, length as m-dash]PPh(3)] (R = H, Et) with Re(2)(CO)(10) provided the NH-functionalized carbene rhenium complex [Re(2)(CNHCH(2)CH(2)NR)(CO)(9)] (3a, R = H, 3b, R = Et). Treatment of 3 with Br(2) provided the mono nuclear [Re(CNHCH(2)CH(2)NR)(CO)(4)Br] (1, R = H, 2, R = Et). However, NH-functionalized carbene complexes 1-3 did not undergo N-alkylation with alkyl halides to yield the N-substituted NHC complexes. The direct ligand substitution of [Re(CO)(5)Br] with a carbene donor was employed to prepare [Re(IMes(2))(CO)(4)Br] (6a, IMes(2) = 1,3-di-mesitylimidazol-2-ylidene; 6b, IMes(2) = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene). Analyses of spectroscopic and crystal data of 6a and 6b show similar corresponding data among these complexes, suggesting the saturated and unsaturated NHCs have similar bonding with Re(I) metal centers. Reduction of 6a and 6b with LiEt(3)BH yielded the corresponding hydrido complexes 7a-b [ReH(CO)(4)(IMes(2))], but not 1 and 2. Ligand substitution of 1, 6a and 6b toward 2,2'-bipyridine (bipy) was investigated. Crystal structures of 1, 3a-b, 6a-b and 7b were determined for characterization and comparison.  相似文献   

14.
In the presence of a catalytic amount of Re(CO)(5)Br, the coupling of epoxides with supercritical CO(2) without an organic solvent at 110 degrees C has afforded cyclic carbonates in good to excellent yields.  相似文献   

15.
p-Fluorophenylisocyanide (CNPhpF) reacts with [Re(CO)5Br] under stepwise exchange of the carbonyl ligands depending on the conditions applied. The reaction stops with the formation of fac-[Re(CO)3Br(CNPhpF)2] in boiling THF. An ongoing carbonyl exchange is observed at higher temperatures, e. g. in refluxing toluene, with the final formation of the [Re(CNPhpF)6]+ cation. The progress of the reactions has been studied by 19F NMR spectroscopy and the structures of [Re(CO)Br(CNPhpF)4] and [Re(CNPhpF)6](BPh4) have been elucidated by X-ray diffraction.  相似文献   

16.
A series of metallocarboranes of the types rac-[M(CO)3(eta(5)-7-R-7,8-C2B9H11)]-, rac-[M(CO)3(eta(5)-7-R-8-R'-7,8-C2B9H11)]-, and rac-[M(CO)3(eta(5)-7-R-7,9-C2B9H11)]- (M=Re) were prepared by reacting [NEt4]2[Re(CO)3Br3] or [Re(CO)3(OH2)3]Br with the corresponding carboranes in the presence of aqueous solutions of either alkali metal or tetraalkylammonium fluoride salts. Carborane derivatives that were investigated included those containing pyridine, amino, carboxylic acid, carbohydrate, and aryl substituents. During the course of the research, it was discovered that Re metallocarboranes can be prepared directly from the respective closo-clusters under similar reaction conditions used with nido-carboranes. Reaction yields ranged from modest to excellent depending on the carborane isomer and the nature of the cage substituent(s). A crystal structure of an amine-substituted Re metallocarborane was obtained where the complex crystallized in the orthorhombic space group P2(1)2(1)2(1) with a=8.982(2) A, b=11.563(3) A, c=16.811(4) A, alpha=beta=gamma=90 degrees, V=1746.1(7) A3, Z=4, and R1=0.0684.  相似文献   

17.
The complexes formed from the reaction of N-acylated tris-(pyridin-2-yl)methylamine (LH) with [Re(CO)(5)Br] depend on the structure of the ligand and the reaction conditions. Thus, while N-[1,1,1-tris-(pyridin-2-yl)methyl]acetamide coordinates through the three pyridine nitrogens to give a stable cationic complex [LHRe(CO)(3)Br], the analogous N-benzoyl ligand reacts under similar conditions to give a neutral complex [LRe(CO)(3)] with coordination through two pyridine nitrogens and a deprotonated amide. To try to explain these different outcomes, the reactions of some structurally related N-acylated [1,1-bis(pyridin-2-yl)]methylamines (L'H) with [Re(CO)(5)Br] have been studied and the reaction pathways identified. These studies indicate that a neutral complex [L'HRe(CO)(3)Br] is initially formed in which the amide portion of the ligand is uncoordinated, but that this complex under appropriate conditions then rearranges to give a cationic complex [L'HRe(CO)(3)]Br in which the coordinated amide nitrogen either remains protonated or is present in its imidic acid tautomeric form. Elimination of HBr from these complexes either thermally or in the presence of base then gives stable neutral complexes [L'Re(CO)(3)]. The impact of the N-acyl group and any substituent at the apex of the tripodal ligands (L'H) on the relative stabilities of intermediate complexes on the reaction pathway helps provide an explanation for the observed difference in behaviour of the N-acylated tris(pyridin-2-yl)methylamines (LH).  相似文献   

18.
Design and synthesis of chelating bisphosphines functionalized with the smallest chemical unit "H" on the P(III) centers ((PH(2)CH(2))(2)CHCH(2)NHPh (4) and (PH(2)CH(2))(2)CHCONHPh (5)) are described. Studies demonstrating that no bulky chemical substituents are necessary to offer thermal/oxidative stability to the -PH(2) groups in 4 and 5 are described. The H atoms around the P(III) centers in 5 (or 4) concur limited/no steric influence, but yet the phosphines manifest high nucleophilicity to coordinate strongly with W(0) and Re(I). The studies include synthesis and X-ray structural characterization of an air-stable primary bisphosphine (5) and its transition-metal chemistry with W(CO)(6) and Re(CO)(5)Br to produce the complexes (eta(2)-(PH(2)CH(2))(2)CHCONHPh)W(CO)(4) (6) and (eta(2)-(PH(2)CH(2))(2)CHCONHPh)Re(CO)(3)Br (7), respectively.  相似文献   

19.
Wu W  Fanwick PE  Walton RA 《Inorganic chemistry》1996,35(19):5484-5491
The reactions of the unsymmetrical, coordinatively unsaturated dirhenium(II) complexes [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)]Y (XylNC = 2,6-dimethylphenyl isocyanide; Y = O(3)SCF(3) (3a), PF(6) (3b)) with XylNC afford at least three isomeric forms of the complex cation [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+). Two forms have very similar bis(&mgr;-halo)-bridged edge-sharing bioctahedral structures of the type [(CO)BrRe(&mgr;-Br)(2)(&mgr;-dppm)(2)Re(CNXyl)(2)]Y (Y = O(3)SCF(3) (4a/4a'), PF(6) (4b/4b')), while the third is an open bioctahedron [(XylNC)(2)BrRe(&mgr;-dppm)(2)ReBr(2)(CO)]Y (Y = O(3)SCF(3) (5a), PF(6) (5b)). While the analogous chloro complex cation [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+) was previously shown to exist in three isomeric forms, only one of these has been found to be structurally similar to the bromo complexes (i.e. the isomer analogous to 5a and 5b). The reaction of 3a with CO gives the salt [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3) (7), in which the edge-sharing bioctahedral cation [(XylNC)BrRe(&mgr;-Br)(&mgr;-CO)(&mgr;-dppm)(2)ReBr(CO)](+) has an all-cis arrangement of pi-acceptor ligands. The Re-Re distances in the structures of 4b', 5a, and 7 are 3.0456(8), 2.3792(7), and 2.5853(13) ?, respectively, and accord with formal Re-Re bond orders of 1, 3, and 2, respectively. Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](PF(6))(0.78)(ReO(4))(0.22).CH(2)Cl(2) (4b') at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 19.845(4) ?, b = 16.945(5) ?, c = 21.759(3) ?, beta = 105.856(13) degrees, V = 7038(5) ?(3), and Z = 4. The structure was refined to R = 0.060 (R(w) = 0.145) for 14 245 data (F(o)(2) > 2sigma(F(o)(2))). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)]O(3)SCF(3).C(6)H(6) (5a) at 173 K: monoclinic space group P2(1)/n (No. 14) with a = 14.785(3) ?, b = 15.289(4) ?, c = 32.067(5) ?, beta = 100.87(2) degrees, V=7118(5) ?(3), and Z = 4. The structure was refined to R = 0.046 (R(w) = 0.055) for 6962 data (I > 3.0sigma(I)). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3).Me(2)CHC(O)Me (7) at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 14.951(2) ?, b = 12.4180(19) ?, c = 40.600(5) ?, beta = 89.993(11) degrees, V = 7537(3) ?(3), and Z = 4. The structure was refined to R = 0.074 (R(w) = 0.088) for 6595 data (I > 3.0sigma(I)).  相似文献   

20.
The oxidative electrochemistry of luminescent rhenium (I) complexes of the type Re(CO) 3(LL)Cl, 1, and Re(CO) 3(LL)Br, 2, where LL is an alpha-diimine, was re-examined in acetonitrile. These compounds undergo metal-based one-electron oxidations, the products of which undergo rapid chemical reaction. Cyclic voltammetry results imply that the electrogenerated rhenium (II) species 1 ( + ) and 2 ( + ) disproportionate, yielding [Re(CO) 3(LL)(CH 3CN)] (+), 7, and additional products. Double potential step chronocoulometry experiments confirm that 1 ( + ) and 2 ( + ) react via second-order processes and, furthermore, indicate that the rate of disproportionation is influenced by the basicity and steric requirements of the alpha-diimine ligands. The simultaneous generation of rhenium (I) and (III) carbonyl products was detected upon the bulk oxidation of 1 using infrared spectroelectrochemistry. The rhenium (III) products are assigned as [Re(CO) 3(LL)Cl 2] (+), 5; an inner-sphere electron-transfer mechanism of the disproportionation is proposed on the basis of the apparent chloride transfer. Chemically irreversible two-electron reduction of 5 yields 1 and Cl (-). No direct spectroscopic evidence was obtained for the generation of rhenium (III) tricarbonyl bromide disproportionation products, [Re(CO) 3(LL)Br 2] (+), 6; this is attributed to their relatively rapid decomposition to 7 and dibromine. In addition, the 17-electron radical cations, 7 ( + ), were successfully characterized using infrared spectroelectrochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号