首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法合成了Al18B4O33:Cr3+荧光粉,使用X射线粉末衍射仪和FSEM对样品的结构和形貌进行了表征,采用荧光分光光度计及紫外分光光度计研究了样品的发光性质及光吸收性质。结果表明,在紫外光或530~630 nm可见光激发下,样品能够发射出660~720 nm的红光,两个发射峰分别位于683 nm和694 nm,其最佳激发波长为590 nm。当原料中Al和B的量比为3.5时,样品的发光最强。初步分析了H3BO3的加入对样品发光影响的机理。样品的最佳煅烧温度为1 150 ℃。随着Cr3+掺杂浓度的升高,样品发光增强,但发光效率降低。样品的漫反射光谱表明,样品对绿光、黄橙光及紫外光有较强的吸收,是一种潜在的优良农用转光剂材料。  相似文献   

2.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。  相似文献   

3.
采用高温固相法在1 400℃下合成了近紫外光激发的单一基质白光荧光粉Ca3Y2-xSi3O12∶xDy3+。XRD检测结果显示,合成的荧光粉主晶相为Ca3Y2Si3O12。荧光光谱分析结果表明:Ca3Y2-xSi3O12∶xDy3+硅酸盐荧光粉可以被348 nm的近紫外光激发,产生白光发射,两个主发射峰位于481 nm(4F9/2→6H15/2)和572 nm(4F9/2→6H13/2)。用481 nm最强峰监测,得到主激发峰位于348 nm的激发光谱,该光谱覆盖了300~450 nm的波长范围。研究了Dy3+离子掺杂浓度及助熔剂H3BO3对荧光粉发光特性的影响,Dy3+离子的最佳掺杂量x(Dy3+)为5%,助熔剂的最佳质量分数为2%。色坐标分析显示:荧光粉的色坐标随着掺杂离子浓度及助熔剂加入量改变而发生变化。x(Dy3+)为5%且H3BO3的质量分数为2%的样品的色坐标为(0.29,0.33),位于标准白光点的色坐标范围内。  相似文献   

4.
采用高温固相法制备了一系列Tb~(3+)掺杂方钠石荧光粉样品Na_8Al_6Si_6O_(24)Cl_2∶Tb~(3+)。通过XRD、SEM、荧光光谱、热猝灭分析仪对样品的晶体结构及其发光性能进行研究。样品晶粒由大小不等、形状不规则的多面体块状颗粒构成。样品在242 nm(对应于Tb~(3+)离子自旋允许的7FJ→9DJ跃迁)激发下发出单色性能较好的绿色荧光,相应的色坐标为(0.324 0,0.587 2),色纯度为87.4%,发光量子效率为0.74。随着Tb~(3+)掺杂浓度的增加,出现浓度猝灭现象。当浓度为5%时,样品的绿色荧光最强。研究结果表明,样品满足PDP器件的使用要求,可作为三基色材料中的绿色组分。  相似文献   

5.
采用高温固相法成功合成了新型BaMoO4:Pr3+黄绿色荧光材料,并对其晶体结构、形貌和发光性质进行了研究。X射线衍射(XRD)测试结果表明在1300℃制备的样品具有白钨矿类结构晶体,样品的形貌在扫描电镜(SEM)显示下呈不规则外形。荧光样品激发光谱由强的电荷迁移跃迁(CT)带和Pr3+离子的特征激发峰组成,主激发峰位于447nm(3 H4→3P2)、472nm(3 H4→3P1)和485nm(3 H4→3P0);其发射谱峰分别位于527nm(3P1→3 H4,5)、542nm和551nm(3P0→3 H5)、596nm(1 D2→3 H4)、614nm(3P0→3 H6)和642nm(3P0→3F2),最强发射峰位于642nm处。获得Pr3+的最佳掺杂摩尔分数为0.2%~0.3%。研究表明:BaMoO4:Pr3+是一种有望应用于蓝光发光二极管(LED)有效激发的黄绿色荧光粉材料。  相似文献   

6.
使用高温固相法于还原气氛中合成了SrLiAl_3N_4∶Eu~(2+)荧光粉并研究了其晶体结构和发光性质。样品均可以被蓝光或紫外光有效激发发射红光。XRD和SEM图谱显示合成了单相SrLiAl3N4。粉体的激发光谱在200~600nm波长范围内呈现出双峰宽带激发带,在267nm、474nm处分别有一个激发峰。发射光谱仅有一个宽带发射峰,峰值在654nm处,属于Eu~(2+)离子的5d→4f特征跃迁。荧光粉发光强度与Eu~(2+)离子掺杂摩尔分数之间的关系表明:随着Eu~(2+)离子掺杂摩尔分数的增加,粉体发光强度先上升后下降,最佳掺杂摩尔分数为0.4%,继续增大Eu~(2+)离子的掺杂量会发生浓度猝灭现象。所准备的SrLiAl_3N_4∶Eu~(2+)荧光粉具有较好的热稳定性和较高的量子效率。  相似文献   

7.
采用高温固相法合成Sr3B2O6∶Eu3+,Li+红色荧光粉,考察了激活剂Eu3+和电荷补偿剂Li+浓度对Sr3B2O6∶Eu3+,Li+荧光粉发光性能的影响。结果表明:适量掺杂Eu3+、Li+离子并不改变Sr3B2O6的结构。当Eu3+掺杂量为4%、Li+的掺杂量为8%时,在900℃下灼烧2 h可以得到发光性能最佳的Sr2.9B2O6∶0.04Eu3+,0.08Li+红色荧光粉。以394 nm的近紫外光激发时,Sr3B2O6∶Eu3+,Li+荧光粉发射出红光,对应于Eu3+的4f-4f跃迁,其中以614 nm附近的5D0→7F2跃迁发光最强,是一种有潜力用于白光LED的红色荧光粉。  相似文献   

8.
王林香  庹娟  叶颖  赵海琴 《中国光学》2019,12(1):112-121
用微波高温固相法合成了Er~(3+)单掺Lu_2O_3,Li~+与Er~(3+)共掺Lu_2O_3及Li~+,Zn~(2+),Mg~(2+)掺杂Lu_2O_3∶Er~(3+)的荧光粉。实验表明金属离子Li~+、Zn~(2+)、Mg~(2+)、Er~(3+)掺杂Lu_2O_3,不影响Lu_2O_3的立方晶相。扫描电子显微镜测量表明,Li~+掺杂可以有效改善粉体的分散性和形貌,Li~+,Zn~(2+),Mg~(2+)共掺杂获得的粉体颗粒分布更加均匀,粒径范围为80~100 nm。379 nm激发下,Li~+与Er~(3+)共掺样品发光较单掺Er~(3+)样品在565 nm处的发光增强了4.5倍,而Li~+、Zn~(2+)、Mg~(2+)与Er~(3+)共掺样品较其发光增强5.3倍。980 nm激发下,Li~+与Er~(3+)共掺样品,Li~+、Zn~(2+)、Mg~(2+)与Er~(3+)共掺样品的发光分别比单掺Er~(3+)样品在565 nm处发光增强23倍与39倍,在662 nm处发光强度分别增强20倍与43倍。379 nm激发下,较单掺Er~(3+)的样品,掺杂Li~+的样品和Li~+,Zn~(2+),Mg~(2+)和Er~(3+)共掺的样品荧光寿命均有所增加,而Zn~(2+)、Er~(3+)共掺及Mg~(2+)、Er~(3+)共掺样品的荧光寿命则有所缩短。  相似文献   

9.
采用高温固相法制备了新型近红外长余辉材料Zn3Al2Ge2O10∶Cr3+,利用X射线衍射、荧光光谱和余辉衰减曲线等对合成的样品进行了分析。结果表明:样品Zn3Al2Ge2O10∶Cr3+是Ge4+取代ZnAl2O4∶Cr3+尖晶石中的部分Al3+而形成的固溶体。在397 nm光的激发下,发射光谱主要由两个明显的窄峰叠加在Cr3+离子的自旋允许跃迁4T2→4A2辐射的宽发射带上。发光强度随着Cr3+离子掺杂浓度的增大和煅烧温度的升高而出现浓度猝灭及温度猝灭现象。当Zn3Al2-xGe2O10∶xCr3+中的Cr3+离子掺杂量x为2%且煅烧温度为1 350℃时,样品的近红外发光及余辉强度最大。材料的余辉持续时间超过300 h,余辉发射谱峰位与荧光发射光谱中的N线一致,均位于697 nm附近。最后分析了煅烧温度对样品余辉性能的影响,并对材料的余辉机制进行了探讨。  相似文献   

10.
采用共沉淀法成功制备了新型黄绿色荧光粉Ca1-x WO4∶xPr3+(摩尔分数x=0.1%,0.3%,0.5%,0.7%)。通过X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱等测试手段进行了结构、形貌和光致发光研究。结果表明:黄绿色荧光粉CaWO4∶Pr3+具有四角白钨矿类结构,空间群为I41/a,其表面形貌较规则、粉粒大小为5~20μm。CaWO4∶Pr3+可被487nm蓝光有效激发,其发射光谱由一系列锐谱组成,分别位于530nm(3P1→3 H5)、547nm、555nm(3P0→3 H5)、602nm(1 D2→3 H4)、618nm、637nm(3P0→3 H6)和648nm(3P0→3F2)。当摩尔分数达到0.5%时样品光致发光最强。样品的色坐标为(x=0.39,y=0.55),表明所发光为黄绿光。为了更好的理解CaWO4∶Pr3+的荧光谱,建立了包括4f2电子组态的自由离子和晶体场相互作用的91×91阶能量哈密顿量矩阵,在理论上合理地解释了Pr3+离子在CaWO4晶体中四角(S4)Ca2+晶位的光谱数据,所得理论值与实验结果吻合较好。  相似文献   

11.
采用高温固相法制备了LiGd(W_yMo_(1-y))_2O_(8-x/2)F_x∶0.4Eu~(3+)(x=0~1,y=0~1)系列白光LED用红色荧光粉。通过扫描电子显微镜、X射线衍射仪、红外光谱仪、荧光光谱仪对荧光粉的形貌、结构、光学性能进行了表征。结果表明,Eu~(3+)、F-和WO_4~(2-)的掺杂没有改变LiGd(MoO_4)_2的四方晶系白钨矿结构;F~-和WO_4~(2-)最佳掺杂量分别为x=0.6,y=0.4。在396 nm激发下,LiGd(W_(0.4)Mo_(0.6))_2O_(7.7)F_(0.6)∶0.4Eu~(3+)的发光强度比未掺杂样品提高了60%,量子效率可达66.23%。当温度升高至100℃时,样品的发射强度降为25℃时的76.6%。在460 nm激发下,样品的最强窄带发射峰位于617 nm处,归属于~5D_0→~7F_2跃迁,色坐标为(0.649 9,0.346 3)。5D0能级的荧光寿命曲线遵循单指数规律衰减,随着F-掺杂浓度的增加,5D0能级的荧光寿命不断增加,归因于低声子能量的F-掺入有效减小了能量的无辐射跃迁概率。所制备的LiGd(W_(0.4)Mo_(0.6))_2O_(7.7)F_(0.6)∶0.4Eu~(3+)荧光粉有望应用于白光LED。  相似文献   

12.
采用高温固相法合成YAG∶Ce3+发光材料。用正交试验法设计实验,确定Ce3+掺杂量、焙烧温度、焙烧时间的最佳条件。研究结果发现:(1)荧光粉发光强度的影响因素排列顺序是:焙烧温度>焙烧时间>Ce离子掺杂量。其中焙烧温度的影响最为关键,其次是焙烧时间的影响,而Ce离子掺杂量的影响较小。(2)用高温固相法制备YAG∶Ce3+荧光粉的最佳工艺参数为:焙烧温度1600℃,Ce离子掺杂量0.10 mol ,焙烧时间4 h ,即 A5 B5 C3组合。依此条件,合成的荧光粉发光最好。另一个最优组合是:焙烧温度1600℃,Ce离子掺杂量0.08 mol ,焙烧时间4 h ,即A5 B4 C3组合。依此条件,合成的荧光粉发光也很好,但稍弱于A5B5C3组合。对合成YAG∶Ce3+发光材料的激发(343和467 nm)、发射(529 nm)光谱的峰形变化及跃迁性质进行了深入分析及指认。  相似文献   

13.
赵芬  冯文林  程雪羚 《光学学报》2014,34(1):116002
采用高温固相法合成了SrMoO4…Pr3+,B3+,Li+新型橙黄色荧光材料,并对其结构、形貌和发光性质进行了研究。X射线衍射(XRD)测量结果表明在1200℃下制备的样品为纯相SrMoO4晶体。样品的形貌在扫描电镜(SEM)显示下有不规则的外形但分散性良好。掺杂电荷补偿剂的荧光粉样品激发光谱由电荷转移跃迁(CT)带和Pr3+离子的特征激发峰组成,主激发峰位于448nm(3 H4→3P2)、473nm(3 H4→3P1)和487nm(3 H4→3P0);其发射光谱由一系列锐谱峰组成,分别位于529nm(3P1→3 H4,5)、545nm,553nm(3P0→3 H5)、600nm(1 D2→3 H4)、617nm(3P0→3 H6)和645nm(3P0→3F2),最强发射峰为645nm。B3+和Li+的掺入,能明显提高该荧光粉的激发与发射峰的强度,最佳掺杂摩尔分数为0.15%B3+和0.35%Li+。  相似文献   

14.
采用高温固相法制备了Eu2+,Cr3+单掺杂及共掺杂的SrAl12O19发光体,研究了它的发光性质和能量传递动力学过程。Eu2+的5d→4f发射峰位于400 nm,与Cr3+位于350~450 nm波长范围的4A2→4T1的吸收带有显著的光谱重叠,有利于Eu2+→Cr3+的能量传递发生,从而将来自于Eu2+离子的紫光转换为Cr3+的深红光发射。在共掺杂的样品中,当激发Eu2+时观察到Cr3+离子的2E→4A2红色线谱发射。当监测该红色线谱发射时,激发光谱中包含有Eu2+的吸收,证明了在SrAl12O19体系中Eu2+→Cr3+能量传递的存在。能量传递导致Eu2+的荧光寿命随Cr3+浓度的增加而缩短,计算表明能量传递效率随Cr3+浓度增加而提高,当Cr3+浓度为5%时能量传递效率可达到50%。  相似文献   

15.
张佳  陈贵宾 《发光学报》2014,(12):1432-1436
采用固相法合成了KSr4(BO3)3∶x Eu2+(KSB∶x Eu2+)荧光粉,通过X射线粉末衍射(XRD)、扫描电镜(SEM)及光致发光光谱分别研究了样品的晶相、形貌及发光性质。XRD研究结果表明制备的样品为正交晶系的KSr4(BO3)3单相。当Eu2+的掺杂摩尔分数x为1.5%时,在激发光谱250~550 nm范围内观察到了两个宽带激发,可归属为Eu2+的4f7-4f65d1跃迁;在400 nm激发下,发射谱呈现出一个不对称的黄色发射带,峰值位于560 nm处,可归属于Eu2+的4f65d1-4f7跃迁。因在KSr4(BO3)3化合物中存在3个Sr格位,根据其光谱特征可推测发射谱中非对称的发射带来源于多个Eu2+发光中心。  相似文献   

16.
采用高温固相法合成了适合紫外-近紫外激发的BaLa2-xZnO5∶xTb3+绿色荧光粉,并对样品的晶格结构和发光性质进行了研究。结果表明:BaLn2ZnO5属于四方晶系,具有空间群I4/mcm,基本结构由LaO8、BaO10和ZnO4多面体组成。样品的激发光谱为4f75d1宽带吸收,激发峰位于241 nm和279 nm。用279 nm紫外光源激发样品,发射峰位于548 nm。在Tb3+掺杂量为x=0.3时发光强度最大。掺杂量x0.03时发生浓度猝灭现象。根据能量共振理论,BaLa2-xZnO5∶xTb3+荧光粉的浓度猝灭机理是电偶极-电偶极相互作用。  相似文献   

17.
采用微波加热固相法合成了Mg2+、Zn2+掺杂CaWO4∶Eu3+荧光粉。利用XRD对样品的晶体结构进行表征,通过荧光分光光度仪对样品的激发光谱、发射光谱和能级寿命进行检测和分析。结果表明,Mg2+、Zn2+、Eu3+掺杂CaWO4不影响CaWO4基质的四方晶相。395nm激发下,与CaWO4∶2%Eu3+样品比较,分别掺杂0.5%的Mg2+或Zn2+的样品发光强度提高了1.3倍和2.1倍;与3%Mg2+或3%Zn2+掺杂CaWO4∶2%Eu3粉体发光比较,当Eu3+浓度增加为3%时,粉体的发光强度分别提高了7.3倍和14.8倍;与CaWO4∶3%Eu3+样品比较,3%的Mg2+或Zn2+掺杂后的样品光强分别提高了1.2倍和1.3倍。262nm比395nm激发同一样品的Eu3+的5D0能级寿命有所增加。与单掺2%Eu3+样品比较,随着Mg2+或Zn2+掺杂浓度增加,样品荧光寿命先增加后减小。同样激发波长下,与Mg2+或Zn2+掺杂CaWO4∶2%Eu3+样品荧光寿命相比,Eu3+浓度增加为3%时,样品的荧光寿命明显变短。  相似文献   

18.
以Y2O3为基质材料,掺杂不同含量的Er3 ,采用共沉淀法制备出性能良好的Er3 ∶Y2O3纳米粉,并将粉体在1700℃和真空度为1×10-3Pa下烧结8h得到Er3 ∶Y2O3透明陶瓷。用X射线衍射仪(D/MAX-RB)、透射电子显微镜(EM420)、自动记录分光光度计(DMR-22)、荧光分析仪(F-4500)和发射波长为980nm的半导体激光器分别对样品的结构、形貌和发光性能进行了研究。结果表明:Er3 完全固溶于Y2O3的立方晶格中,Er3 ∶Y2O3粉体大小均匀,近似球形,尺寸约40~60nm左右。Er3 ∶Y2O3透明陶瓷相对密度为99.8%,在长波长范围内其透光率超过60%,在波长为980nm的激光下有两个上转换发光带,其中绿色发光中心波长位于562nm,红色发光中心波长位于660nm,分别对应4S3/2/2H11/2→4I15/2和4F9/2→4I15/2的跃迁;随着铒浓度的提高颜色从绿色向红色转变,Er3 的掺杂浓度不宜超过2%,超过这个范围,对材料发光强度的增强作用反而很小。  相似文献   

19.
采用氨水、双氧水和磷酸氢二铵溶液作沉淀剂,通过共沉淀法制备出Y(P,V)O4∶Tm3+荧光粉,利用XRD、SEM、紫外以及真空紫外激发下的发射光谱对其进行研究。结果表明:共沉淀法制备的Y(P,V)O4∶Tm3+荧光粉的颗粒形貌好,在147nm真空紫外光和254nm紫外光激发下,荧光粉发射主峰位于476nm,色坐标范围为: 0. 167≤x≤0. 200; 0. 146≤y≤0. 183。从这些结果来看,Y(P,V)O4∶Tm3+体系还不能满足实际应用的要求,仍需进一步的深入研究以改善其性能。  相似文献   

20.
使用高温固相法制备了La7(1-x)P3O18∶xDy3+发光材料,在347nm激发下,其发射峰分别为480、578、664nm,分别对应离子Dy3+能级内的4F9/2→6H15/2、6H13/2和6H11/2跃迁.随着Dy3+浓度的增加,黄光和蓝光的强度的比值逐渐减小,当Dy3+浓度为2mol%时,发光强度最大,计算出的色坐标处于白光区域内(0.33,0.33),该材料的发光颜色随Dy3+浓度的变化而在白光区域内改变,因此,该材料可作为紫外激发的白色发光材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号