共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
自适应双边滤波红外弱小目标检测方法 总被引:1,自引:0,他引:1
针对红外弱小目标检测,提出一种基于自适应双边滤波的背景预测算法.该算法利用空域低通滤波和图像灰度信息的非线性组合,自适应的对背景进行预测,达到提高弱小目标检测性能的目的.仿真和实验表明:与小波滤波的检测算法相比,该算法能够更加有效地从结构化背景中检测目标抑制背景. 相似文献
3.
陈灿灿夏润秋刘洋刘力双陈青山 《应用光学》2023,(4):826-833
针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。 相似文献
4.
为了解决SUSAN滤波算子不能自适应调整滤波系数的问题,采用Geusebroek提出的各向异性高斯滤波器替代SUSAN滤波算子中的高斯滤波部分。由局部图像的方差和像素的邻域平滑度决定长短轴的方差,由该点的梯度方向决定滤波器的长轴方向,由局部图像的灰度值与均值差的一阶范数确定SUSAN滤波器的阈值,从而构造出各向异性SUSAN滤波器。将其用于红外弱小目标检测中,实验结果表明:各向异性SUSAN滤波器能够很好地保留图像中的边缘信息,使残差图像中弱小目标的信噪比增益和信杂比增益极大地提高,目标大小得到较好的保留,虚警率下降。 相似文献
5.
为了解决SUSAN滤波算子不能自适应调整滤波系数的问题,采用Geusebroek提出的各向异性高斯滤波器替代SUSAN滤波算子中的高斯滤波部分。由局部图像的方差和像素的邻域平滑度决定长短轴的方差,由该点的梯度方向决定滤波器的长轴方向,由局部图像的灰度值与均值差的一阶范数确定SUSAN滤波器的阈值,从而构造出各向异性SUSAN滤波器。将其用于红外弱小目标检测中,实验结果表明:各向异性SUSAN滤波器能够很好地保留图像中的边缘信息,使残差图像中弱小目标的信噪比增益和信杂比增益极大地提高,目标大小得到较好的保留,虚警率下降。 相似文献
6.
为了解决复杂背景下小目标的识别,提高检测速度的问题,提出了一种改进的中值滤波方法.用其进行背景抑制,保护了图像细节,提高了处理的实时性.在分析小目标图像特点的基础上,提出了采用击中击不中变换对图像进行分割,达到探测目标的目的.仿真结果验证了该算法是一种实时有效,且易于实现的目标探测方法. 相似文献
7.
8.
9.
10.
11.
一种背景自适应调整的弱点目标探测算法 总被引:9,自引:7,他引:9
针对因复杂背景导致低信噪比的弱点目标探测率降低的问题,首先分析了从红外图像中探测弱点目标时,由于复杂和缓变背景下潜在目标探测率不同,而导致目标探测率降低的理论依据;并在该分析的基础上,提出了一种基于背景自适应调整的红外点目标探测算法。该方法利用鲁宾逊(Robinson)保护滤波器从经过预处理的图像中提取潜在目标;通过复杂背景模糊隶属度函数将图像映射到模糊特征平面,并由该特征平面计算背景调整因子,以对提取的潜在目标进行加权调整,从而降低了复杂背景的影响。实验结果表明,该算法可以显著提高复杂背景下红外点目标的检测概率,并且能够探测出信噪比为1的目标。 相似文献
12.
13.
14.
15.
为解决结构化背景的抑制,利用对偶树复小波良好的方向选择性、平移不变性和可精确重构的特点,提出了一种基于对偶树复小波变换的红外弱小目标背景抑制方法.首先利用对偶树复小波变换对图像进行分解提取多尺度细节特征,然后采用最大中值滤波对各分解层的小波系数进行非线性地调整来改变目标特征的强度,重构获得估计的背景图像,最终从原图中减去所估计的背景图像实现背景抑制.基于真实的红外图像序列进行实验.结果表明:与二维最小均方误差法相比,该方法从主观视觉和数值指标都具有良好的抑制效果. 相似文献
16.
基于分类的红外云层背景弱小目标检测方法 总被引:3,自引:2,他引:1
提出了一种新的基于模糊分类的红外云层背景弱小目标检测方法.根据红外成像的特点,将红外云层背景弱小目标图像分为三类:边缘类、净空及云中类、弱小目标类;对不同类别图像进行分析,建立了分类模型,并定义了方向特征矢量,将其作为类别的特征矢量;根据模糊分类的理论,定义了类相似系数来判别图像中每一个像素的类别属性,保留弱小目标类的像素点完成检测.实验结果表明,该方法能够对红外弱小目标图像中不同类型的区域进行准确的分类,从而较好的实现了对低信杂比的复杂云层背景图像中的弱小目标检测. 相似文献
17.
18.
基于改进的剪切波变换和引导滤波的红外弱小目标背景抑制方法 总被引:1,自引:0,他引:1
由于传统的背景抑制方法没有充分利用信号的方向信息,使其不能有效区分背景边缘和红外弱小目标,从而造成背景抑制结果中有较多的背景泄露.针对上述问题,本文利用改进的剪切波变换和引导滤波,提出了一种新的背景抑制方法.首先,采用改进的剪切波变换对红外弱小目标图像进行多尺度和多方向分解,将图像分解得到不同的高频子带系数和低频子带系数;其次,利用目标信号与边缘在方向上的差异,采用自适应引导滤波对高频子带系数进行处理;再次,对分解后的低频子带系数和处理后的高频子带系数进行改进的剪切波逆变换,得到预测的背景图像;最后,将原图像与背景预测图像相减获得背景抑制且目标增强的红外图像.为了验证本文方法的有效性,采用多组实验对其进行验证,并与经典的Max-Median、TDLMS和Top-hat等方法作比较.多组实验结果均表明本文方法在主观视觉和客观评价指标方面均优于其它三种经典方法,可有效提高红外搜索跟踪系统对红外弱小目标的探测概率. 相似文献