首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Summary The heat transfer problem for the flow of an incompressible viscous, heat-conducting fluid, due to uniform rotation about a diameter of a sphere, which is kept at a constant temperature, has been solved with viscous dissipation included. Due to inflow at the poles the cooler liquid is drawn from infinity towards the rotating sphere and this causes a lowering of the temperature there. After flowing in the boundary layer of the sphere the liquid gets heated up and causes a rise in temperature near the equator. Numerical results are given in case of water (Prandtl number σ=5), and it is found that the isothermals are surfaces of revolution flattened at the poles and elongated near the equator. The thermal and the velocity boundary layers turn out to be of the same order of magnitude.  相似文献   

3.
4.
The influence of Coriolis force on heat transfer in a rotating transitional boundary layer has been experimentally investigated. The experiments have been conducted for local Görtler numbers up to 150. Heat transfer measurements have been performed for a flat plate with nearly uniform heat flux applied to the surface, where the temperature was measured by the thermochromic liquid crystal method. The results indicate that heat transfer is enhanced when Coriolis force acts towards the wall, i.e., on the pressure surface. The velocity measurements under equivalent conditions show that Coriolis instability induces counter-rotating longitudinal vortices which augment the lateral transport of the fluid on the pressure surface. On the other hand, the heat transfer on the suction surface remains at the same level as compared to the case without system rotation. As a consequence, the heat transfer coefficient on the pressure surface is 1.8 times higher than that measured on the suction surface when averaged over the measured surface.  相似文献   

5.
6.
In the present study, the regionally-averaged heat transfer coefficients and flow temperature distributions were measured in an equilateral triangular channel with three different rib arrangements (α = 45, 90 and 135°). To measure regionally-averaged heat transfer coefficients in the channel, two rows of copper blocks and a single heater were installed on two ribbed walls. The fluid temperature distributions were obtained using a thermocouple-array. The rotation number ranged from 0.0 to 0.1 with a fixed Reynolds number of 10,000. For the 90° ribs, the heat transfer coefficients on the pressure side surface were increased significantly with rotation, while the suction side surface had lower heat transfer coefficients than the stationary channel. For the angled ribs, rib-induced secondary flow dominated the heat transfer characteristics and high heat transfer rates were observed on the regions near the inner wall for the 45° angled ribs and near the leading edge for the 135° angled ribs.  相似文献   

7.
Convective heat transfer in a transverse cavity with a small aspect ratio, angle of wall inclination ϕ = 30–90°, and heated bottom, frontal, and rear walls of the cavity is studied experimentally. Temperature distributions are measured in longitudinal and transverse sections on three walls; temperature fields are measured over the entire heated surface. Local and mean heat-transfer coefficients are calculated. The highest intensification of heat transfer is found to occur on the rear wall for low values of ϕ Reconstruction of the one-cell structure to the two-cell structure of the primary vortex in the cavity leads to a drastic decrease in heat transfer over the cavity span from the end faces toward the center in the case with ϕ = 60 and 70°. A certain increase in the mean heat-transfer coefficient averaged over the entire heated surface is noted for ϕ = 60°. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 23–29, July–August, 2007.  相似文献   

8.
9.
A numerical analysis has been performed for a developing turbulent flow in a rotating U-bend of strong curvature with rib-roughened walls using an anisotropic turbulent model. In this calculation, an algebraic Reynolds stress model is used to precisely predict Reynolds stresses, and a boundary-fitted coordinate system is introduced as a method of coordinate transformation to set the exact boundary conditions along the complicated shape of U-bend with rib-roughened walls. Calculated results for mean velocity and Reynolds stresses are compared to the experimental data in order to validate the proposed numerical method and the algebraic Reynolds stress model. Although agreement is certainly not perfect in all details, the present method can predict characteristic velocity profiles and reproduce the separated flow generated near the outer wall, which is located just downstream of the curved duct. The Reynolds stresses predicted by the proposed turbulent model agree well with the experimental data, except in regions of flow separation.  相似文献   

10.
A numerical analysis and an experimental study of heat transfer rate in rotating cylindrical cells with partitions are performed. The work is done mainly in the Ekman suction regime, where the Coriolis force dominates over centrifugal buoyancy. It is shown that the heat transfer rate increases substantially by placing partitions in the cell. The partitions suppress the Coriolis force so that convection induced by the centrifugal buoyancy becomes important. It is found that the Nusselt number correlates with the parameter PrβΔTEk?1/2 with the partitions. The partitions have no effect on the heat transfer in the centrifugal buoyancy convection regime.  相似文献   

11.
The problem of steady state forced convection heat transfer in a viscous incompressible fluid occupying the annular region between two concentric spheres is considered. The inner sphere is maintained at a constant temperatureT 0 and rotates slowly around an axis through the centre. The outer sphere is at rest and the temperature of its surface is prescribed as a function of the spherical coordinates and. It is shown that, when viscous dissipation is small, the overall rate of heat transfer from the rotating sphere into the fluid is unaffected by convection from the sphere surface, in case of a slow rotation, where the Stokes solution holds.  相似文献   

12.
13.
 The convective heat transfer from fins to air has been evaluated using rotating annular fins subjected to an air flow parallel to the fins. The fin cooling is studied using infrared thermography. The thermal balance in a fin during its cooling process allows us to obtain the heat transfer coefficient from the temperature time evolution of the fin. Moreover, Particle Image Velocimetry allows us to obtain the flow field in the mid-plane between two fins. The influence of the fin spacing on the convective heat transfer is studied for various velocities of the superposed air flow and various fin rotational speeds. These tests were carried out for air flow Reynolds numbers (based on the shaft diameter and the velocity of the superposed air flow) between 2550 and 18200 and rotational Reynolds numbers (based on the shaft diameter and the peripheral speed) between 800 and 2.9 × 104, for different fin spacings. Received: 14 May 1999/Accepted: 8 October 1999  相似文献   

14.
Analyses are presented for infrared radiative energy transfer in gases when other modes of energy transfer simultaneously occur. Fully developed laminar flow of an absorbing emitting gas in a circular tube is considered under the conditions of uniform wall heat flux. Nongray as well as gray formulations are presented, and results are obtained for illustrative cases. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. The influence of variable wall emittance (gray and nongray) upon radiative energy transfer in nongray gases is investigated. In particular, nongray results are obtained, in the large path length limit, for the flow of CO2 through stainless steel tubes of various compositions. Finally, a correlation is presented which can be utilized to extend all nongray results for the parallel plate geometry, already available in literature, to yield results for the corresponding case of a circular tube. This work was supported by the National Science Foundation through Grant No. GK-16755.  相似文献   

15.
16.
17.
The study of rotating flows is of interest due to both the development of the centrifugal method of separation of gas and isotope mixtures and the possibility of astrophysical applications. An analytical nonlinear model for calculating the hydrodynamic characteristics of the viscous incompressible fluid flow in a rotating cylinder in the presence of a retarding cover is presented. The cases of stationary and rotating covers are considered. The analysis is performed on the basis of the system of hydrodynamic Navier-Stokes equations. The flow domain is divided up into the main flow and end boundary layers at the cylinder bottom and at the rotating cover. In its turn, the main flow is divided up into an inviscid quasi-rigid core and a lateral layer within which almost the entire upward circulatory flow is concentrated. The equations of the boundary layers at the end surfaces are analyzed by the approximate Slezkin-Targ method. The solutions in the boundary and lateral layers are “stitched” together with the velocity distribution in the main flow core. The unknown angular velocity ω 1 and radial boundary R 1 of the core are determined from the balance of the moments of the friction forces acting on the main rotating flow and the continuity condition for the circulatory flow. The experimental and calculated data are compared.  相似文献   

18.
Laminar flow in a rotating rectangular channel with suction through one or more of the permeable walls is studied. The conditions under which a two-dimensional formulation of the flow core calculations is possible are discussed and the corresponding problem is formulated. Calculation results illustrating the combined effect of suction and rotation about the transverse axis are presented for a channel with a stopped end. Leningrad. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 30–34, September–October, 1988.  相似文献   

19.
The paper describes a method of evaluating heat transfer in corner flow of an incompressible fluid with suction
Wärmeübertragung in einer Eckenströmung
Zusammenfassung Der Aufsatz beschreibt eine Methode zur Berechnung des Wärmeübergangs bei Strömung eines inkompressiblen Fluids in eine Ecke mit Absaugung.
  相似文献   

20.
A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow is suggested. Under the assumption of perfect mixing in liquid plugs, the recurrent relations for temperature in then-th liquid plug and heat and mass fluxes from then-th gas slug are derived. Total mass and heat fluxes in gas-liquid slug flow during gas hydrate formation are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号