首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Analysis of thiabendazole (TBZ) residues in citrus fruit is performed using a bonded phase, SE-54, fused-silica capillary column. The fungicide is extracted with hexane: ethyl acetate (90:10, v/v) at high pH and, after a short cleanup, determined by gas-liquid chromatography with a nitrogen-phosphorus detector (NPD). Recoveries through the method are always higher than 80% and the limit of detection is 0.01 mg/Kg. TBZ residues are determined in whole fruit, peel, and pulp of "Washington Navel" oranges and "Hernandina" clementines treated with 1500 mg/L fungicide. Residues found in these samples and their changes during storage are reported. TBZ analysis in samples with high residue levels (peel and whole fruit) is also carried out by direct determination in the crude extracts. Results obtained with this shorter method are similar to those of the former proposed method.  相似文献   

2.
Abstract

A sensitive LC–ESI-MS/MS method was developed for the determination of 165 pesticides in 50 citrus fruit samples collected in Sicily. Moreover, an evaluation of pesticides levels in the citrus layers (peel, albedo, and pulp) was carried out. The method presented acceptable trueness, precision, and linearity with LOQ of 5?μg/kg. The results obtained showed a high frequency of fungicides class pesticides in all the citrus samples examined (>95%) with the highest concentrations in the peel (4468?µg/Kg). A significant difference of concentrations was found between the layers of the citrus fruits analysed (p?<?0.05). In particular, the peel and albedo present higher pesticides significantly higher than the pulp. Our findings confirming the widespread use of these substances in citrus cultivation and suggesting the importance of pesticides analysis in all the citrus fruit layers separately, considering the different interactions between the physicochemical characteristics of the matrices and the pesticides.  相似文献   

3.
A new analytical method, based on organic solvent extraction with dichloromethane-acetone (75 + 25, v/v) followed by gas chromatography with mass spectrometric detection, is presented for the determination of residues of 10 fungicides in white grapes for vinification. Some of them (cyprodinil, fludioxonil, and pyrimethanil) have been used for only 2-3 years and, therefore, no methods are available in the scientific literature for such a screening. Quality parameters yielded good precision (relative standard deviation of <10%) and detection limits (ranging between 1 and 18 microg/kg) that are lower than the maximum residue limits (MRLs) set by the 76/895/European Economic Community (EEC) and 90/642/EEC Directives. The applicability of the method was evaluated by analysis of 5 different white grapes produced in the Rías Baixas area in Galicia (northwestern Spain) for vinification. The method showed good performance in analyses of real samples to determine whether the concentrations of the fungicides used exceeded their MRLs. The method of standard additions was found to be necessary to avoid matrix effects in the quantification of fungicide residues. Results showed that concentrations of the fungicides identified in grapes were lower than the MRLs established by the European legislation.  相似文献   

4.
A multiresidue method is developed for the screening, quantification and confirmation of 43 pesticides, belonging to different chemical families of insecticides, acaricides, fungicides, herbicides and plant growth regulators, and 9 pesticide metabolites in four fruit and vegetable matrices. Pesticide residues are extracted from the samples with MeOH:H2O (80:20, v/v) 0.1% HCOOH, and then a cleanup step using OASIS HLB SPE cartridges is applied. The SPE eluate is concentrated and the final volume adjusted to 1 mL with MeOH:H2O (10:90, v/v) before injection into LC-MS/MS. Analyses are performed using electrospray ionization (ESI) and triple quadrupole (QqQ) analyzer. The method has been validated based on the SANCO European Guidelines for representative samples that were chosen to study the influence of different matrices: high water content (tomato), high acidic content (lemon), high sugar content (raisin) and high lipidic content (avocado). Special attention has been given to minimize the degradation of some pesticides into their metabolites and the losses observed in the evaporation step. Under the optimized conditions, the recoveries were, with a few exceptions, in the range 70-110% with satisfactory precision (CV < or = 15%). The quantification of analytes was carried out using the most sensitive transition for every compound and by "matrix-matched" standards calibration. The method can be used for the accurate determination of 52 pesticides and metabolites in one single determination step at the 0.01 mg/kg level. Confirmation of residues detected in samples is performed by an independent injection into the LC-MS/MS system by acquiring additional MS/MS transitions to that used for quantification. The acquisition of the highest number of available transitions is suggested for unequivocal confirmation of the analyte.  相似文献   

5.
Pesticide residues on fruits and vegetables from Ontario, Canada, 1991-1995   总被引:3,自引:0,他引:3  
For the 5-year period 1991 to 1995, 1536 vegetable and 802 fruit samples were analyzed. The purpose of this study was to determine if pesticides were present on Ontario-produced fruits and vegetables, and if so, to determine if residues violated maximum residue limits (MRLs). Overall, 31.5% of the samples had no detectable pesticide residues, whereas 68.5% contained one or more residues. Most of the residues were present at very low concentrations; 48% of the detections were < 0.1 parts per million (ppm), and 86% were < 1 ppm. However, violations of MRL were observed in only 3.2% of the vegetables samples and 3.1% of the fruit samples. In addition, 4.8% of the samples contained a "technical" violation, that is, there was no specified MRL for the pesticide-commodity combination and the residues exceeded 0.1 ppm. Of the detectable residues, 63% were < 10% of the MRL, whereas 89% were < 50% of the MRL. More fruit samples (91.4%) had a detectable residue, compared with vegetable samples (56.6%). Fruit is often treated close to harvest or post harvest to ensure that wholesome produce reaches the consumer. Forty-six percent of the samples contained 2 or more residues, and 2% of all samples had more than 5 different pesticides detected; fruit samples tended to have more multiple residues. The most frequently found pesticides were captan, the dithiocarbamate fungicides, endosulfan, azinphos-methyl, phosmet, parathion, and iprodione. These pesticides were also used in the greatest quantity for crop production. Overall, the data agree fairly closely with those reported for the U.S. Department of Agriculture Pesticide Data Program because the 2 programs have similar analytical goals and objectives.  相似文献   

6.
Trifloxystrobin and tebuconazole are used for control of Sigatoka leaf spot disease of banana. This study was conducted to evaluate residue persistence of the fungicides in/on banana fruit, other edible parts and soil after spray application of the combination formulation, Nativo 75 WG, at the standard dose, 87.5 + 175 and double dose, 175 + 350 g a.i. ha?1. The fungicides were extracted from banana and soil with acetone, partitioned into dichloromethane and cleaned-up using activated charcoal for trifloxystrobin and primary/secondary amine (PSA) for tebuconazole samples. The limit of quantification of the method was 0.05 mg kg?1 for both fungicides. Initial residues of trifloxystrobin were 0.444 and 0.552 mg kg?1 in/on banana with peel (whole fruit), which reached <0.05 and 0.065 mg kg?1 after 30 days from treatment at the standard and double doses, respectively. Tebuconazole residues were 0.636 and 960 mg kg?1 initially and reduced to 0.066 and 0.101 mg kg?1 after 30 days. Trifloxystrobin and tebuconazole degraded with the half-life of about 11 days. Trifloxystrobin or its metabolite was not detected in the fruit pulp. Tebuconazole being systemic in nature moved to the fruit pulp which was highest on the 3rd day (0.103 and 0.147 mg kg?1) and remained for 15 days. Matured banana fruit, flower, pseudostem and field soil were free from fungicide residues. For consumption of raw banana 43 days pre-harvest interval (PHI) is required after treatment of the combination formulation. Therefore application of the fungicides towards maturity stage of the fruits may be avoided.  相似文献   

7.
A gas chromatographic ion trap mass spectrometry (GC-ITMS) method was developed for the determination of 11 new generation fungicides (benalaxyl, benalaxyl-M, boscalid, cyazofamid, famoxadone, fenamidone, fluquinconazole, iprovalicarb, pyraclostrobin, trifloxystrobin and zoxamide) in grapes and wines. Samples were extracted with ethyl acetate:hexane (1:1, v/v) and cleaned-up with graphitized carbon black/primary secondary amine (GCB/PSA) solid-phase extraction (SPE) cartridges using acetonitrile:toluene (3:1, v/v) as eluent. The addition of analyte protectants (3-ethoxy-1,2-propanediol, d-sorbitol and l-gulonic acid γ-lactone) in the final extracts allowed to avoid the matrix-induced response enhancement effect on quantitation process with absolute recoveries ca. 100%. Precision (expressed as relative standard deviation) was lower than 16% for all fungicides. Limits of detection and quantitation were lower than 0.01 mg/kg or mg/L, except for cyazofamid, much smaller in all cases than maximum residue levels (MRLs) established by European Union for grapes and by Switzerland and Italy for wines. The proposed method was applied to determine fungicide residues in three different white grapes for vinification produced in Ribeiro area in Galicia (NW Spain), as well as in their corresponding final wines.  相似文献   

8.
秦富  邓全道  李湧  黄大新  汪文龙 《色谱》2017,35(11):1129-1136
建立了广西名优特产罗汉果中55种杀菌剂残留的QuEChERS-高效液相色谱-串联质谱(HPLC-MS/MS)检测方法。试样经1%(v/v)醋酸乙腈提取后,加入无水硫酸镁脱水,并使用无水硫酸钠、N-丙基乙二胺(PSA)和C18进行净化。采用均含有0.005 mol/L甲酸铵及0.01%(v/v)甲酸的95%(v/v)乙腈水溶液和水作为流动相中的有机相和水相进行梯度洗脱,在电喷雾离子源正离子模式(ESI+)下采用动态多反应监测(DMRM)进行扫描,基质匹配外标法定量。55种杀菌剂在1.0~100.0μg/kg范围内线性相关性良好,相关系数(R~2)0.99;方法的检出限(S/N3)为1.0μg/kg,定量限(S/N10)为10.0μg/kg;加标(10.0μg/kg)回收率为76.96%~118.45%,相对标准偏差为3.44%~19.63%(n=6)。该法快速、准确、灵敏,适合高通量检测罗汉果中的杀菌剂残留。  相似文献   

9.
A fast, reliable method for the determination of more than twenty chlorinated fungicides and insecticides in a variety of fruit samples is presented. The pesticides are extracted from chopped samples with magnetic stirring, after adding 13 ml of acetone-phosphate buffer-brine solution (12:1, v/v) with 5 ml of n-hexane. The continuous module employed allows sequential decolourization of the organic phase, solvent changeover and solid-phase extraction for clean-up and preconcentration purposes. A 1-microl aliquot of the pesticides in ethyl acetate (eluent) is finally injected into the gas chromatograph for separation and identification. The method provides excellent clean-up despite the complexity of the matrices involved. Fruit samples (5-20 g) containing 0.1-1250 ng/g pesticides were analysed with a high precision (4-6%). After contamination of the fruit samples for 12 h, average recoveries >90% at fortification levels of 5-25 ng/g were obtained for most of the pesticides. Positive findings of these pesticides in fruits purchased at local markets were confirmed by GC-MS.  相似文献   

10.
Fungicide residues in vegetables (benomyl, carbendazim, thiabendazole) are analyzed through a clean-up procedure that uses a portion of the aqueous acetone extract prepared for multiresidue methodology. A portion of the aqueous acetone extract (equivalent to 5 g of vegetables) is loaded onto an Extrelut-20 cartridge (the cartridge is filled with a coarse, large-pore diatomaceous material). Then, acetone is partially removed by an upward stream of nitrogen at 2l/min for 30 min. Benzimidazolic fungicides are recovered by percolating the cartridge with 100 ml of 0.1 M phosphoric acid solution, which also serves to convert benomyl to carbendazim. The percolating acid solution is drained on-line through a strong cation-exchange (SCX) solid-phase extraction cartridge with the aid of a slight vacuum. Benzimidazolic fungicides are retained on the SCX cartridge. The phosphoric acid solution is discarded together with the washings of the SCX cartridge, i.e., water followed by methanol-water (75:25), that remove unwanted coextractives. Finally, benzimidazolic fungicides are recovered by eluting the SCX cartridge with methanol-ammonium formate buffer (75:25). The final extract is then analyzed by reversed-phase HPLC with UV detection. Recoveries from crops such as apples, lettuce, strawberries and citrus fruits are generally greater than 80% and no interferences were observed. The clean-up is simple and straightforward, requires only disposable items, water solutions and a few milliliters of solvent and a minimum number of manipulations, and does not require concentration steps or electrical equipment.  相似文献   

11.
Various liquid chromatographic (LC) techniques for analyzing avermectin (Abamectin) were compared after extraction of residues from citrus fruit samples by matrix solid-phase dispersion (MSPD). LC with UV and fluorescence detection were used as also was LC coupled to the mass spectrometer by an electrospray interface. The results obtained by the three methods were compared in terms of sensitivity and selectivity. The combination of MSPD extraction and LC with fluorescence detection have made it possible to quantify 0.5 microg kg(-1) of Abamectin in 0.5 g of orange sample, with an overall average recovery of 94%. The procedure provides a simple and sensitive method for monitoring Abamectin residues in citrus fruit at the levels required by legislation.  相似文献   

12.
The simultaneous determination of four strobilurin fungicides (picoxystrobin, kresoxim‐methyl, trifloxystrobin, and azoxystrobin) in cotton seed by combining acetonitrile extraction and dispersive liquid?liquid microextraction was developed prior to GC with electron capture detection. Several factors, including the type and volume of the extraction and dispersive solvents, extraction condition and time, and salt addition, were optimized. The analytes were extracted with acetonitrile from cotton seed and the clean‐up was carried out by primary secondary amine. Afterwards, 60 μL of n‐hexane/toluene (1:1, v/v) with a lower density than water was mixed with 1 mL of the acetonitrile extract, then the mixture was injected into 7 mL of distilled water. A 0.1 mL pipette was used to collect a few microliters of n‐hexane/toluene from the top of the aqueous solution. The enrichment factors of the analytes ranged from 36 to 67. The LODs were in the range of 0.1 × 10?3?2 × 10?3 mg/kg. The relative recoveries varied from 87.7 to 95.2% with RSDs of 4.1?8.5% for the four fungicides. The good performance of the method, compared with the conventional pretreatments, has demonstrated it is suitable for determining low concentrations of strobilurin fungicide residues in cotton seed.  相似文献   

13.
A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for the simultaneous determination of spirotetramat and its four metabolite residues in citrus, peel, pulp and soil was developed and validated by liquid chromatography with tandem mass spectrometry (LC‐MS/MS). The samples were extracted with acetonitrile (1%, glacial acetic acid, v/v) and purified using primary secondary amine and octadecylsilane. The limit of detection was 0.01–0.13 mg/kg, whereas that of quantification was 0.02–0.40 mg/kg for spirotetramat and its metabolites. The average recoveries of spirotetramat, spirotetramat‐enol, spirotetramat‐mono‐hydroxy, spirotetramat‐enol‐glucoside and spirotetramat‐ketohydroxy in all matrices were 73.33–107.91%, 75.93–114.85%, 76.44–100.78%, 71.46–103.19% and 73.08–105.27%, respectively, with relative standard deviations < 12.32%. The dissipation dynamics of spirotetramat in citrus and soil followed first‐order kinetics, with half‐lives of 2.3–8.5 days in the three sampling locations. The terminal residues of spirotetramat in four matrices at the three locations were measured below the 1.0 mg/kg maximum residue limit set by China, and residues were found to be concentrated on the peel. The risk assessment of citrus was evaluated using risk quotients. The risk quotient values were found to be significantly <1, suggesting that the risk to human health was negligible when using the recommended doses of spirotetramat in citrus. These results could provide guidance for the safe and proper application of spirotetramat in citrus in China.  相似文献   

14.
An efficient and sensitive enantioselective method for simultaneous determination of three acylamino acid fungicides in vegetables and fruits was presented by high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry. The three fungicides (benalaxyl, furalaxyl, and metalaxyl) residues in samples were extracted with acetonitrile containing 1% acetic acid and an aliquot was cleaned up with Si-(CH(2) )(3) -NH-(CH(2) )(2) -NH(2) and C(18) sorbent. Complete enantioseparation of three acylamino acid fungicides enantiomers was obtained under reversed-phase conditions on a cellulose tris (4-chloro-3-methylphenylcarbamate) column at 25°C using acetonitrile-0.1% formic acid solution (45:55, v/v) as a mobile phase. The elution orders of the eluted enantiomers were determined by a circular dichroism (CD) detector. The linearity, matrix effect, recovery, and precision were evaluated. Good linearity was obtained over the concentration range of 0.5-250 μg/L for each enantiomer in the standard solution and sample matrix calibration curves. There was no significant matrix effect for three fungicides determination based on the method. The inter-day mean recoveries, intra-day repeatability, and inter-day reproducibility varied from 81.3 to 95.7%, 2.2 to 9.4%, and 2.3 to 9.6%, respectively. The method provided high selectivity and sensitivity, and limits of quantification for enantiomers of three fungicides in vegetables and fruits were both 1 μg/kg.  相似文献   

15.
Recently, a mixed-mode solid-phase extraction (SPE) procedure was developed for rapid extraction and cleanup for determination of the fungicides thiabendazole and carbendazim in various fruit juices. This paper reports the application of that sample preparation procedure to the liquid chromatographic/mass spectrometric determination of these fungicides in apple juice with detection by positive electrospray ionization mass spectrometry (ESI/MS). Response was linear for sample concentrations from 2 to 500 microg/L (ppb). Recoveries averaged 74% (9% RSD) for carbendazim and 93% (9% RSD) for thiabendazole. After SPE cleanup, no matrix supression was observed for the ESI+ response for either compound studied. The method was applied to the analysis of incurred residues in 4 store-bought apple juices; carbendazim levels ranged from 10 to 70 microg/L and thiabendazole levels ranged from less than 2 to 130 microg/L.  相似文献   

16.
徐诚  张圣虎  张毅  浦跃朴  尹立红  张娟  宋宁慧 《色谱》2018,36(4):339-344
建立了超高效液相色谱-三重四极杆-离子阱质谱定量检测柑橘中螺虫乙酯及其4种代谢产物残留的分析方法。样品以QuEChERS技术为前处理方法进行净化、浓缩,在电喷雾电离(ESI)源、正离子模式下,采用MRM监测模式分析,以基质匹配外标法定量。螺虫乙酯及其4种代谢产物在2~1000 μg/L线性范围内具有良好的线性关系,相关系数(R2)>0.99;方法的检出限(LOD)为0.08~0.49 μg/kg,定量限(LOQ)为0.26~1.62 μg/kg;空白样品添加回收率为94.0%~98.7%,相对标准偏差为1.1%~5.3%。田间试验结果表明,在施药最高推荐量60 mg/kg (有效成分)下,柑橘果肉、果皮、全果样品中螺虫乙酯及其4种代谢产物残留总量分别为5.93~14.20、11.30~17.86和1.30~16.51 μg/kg,残留量均低于国家标准最大残留限量值1.00 mg/kg。该方法操作简便,快速准确,灵敏度高,分离效果好,能够有效降低基质干扰效应,准确度与精密度均能达到定量分析要求,适用于柑橘中螺虫乙酯及其代谢产物残留的定性定量检测。  相似文献   

17.
Summary Concentrations ofl-ascorbic acid in fresh and processed fruit and vegetables were determined by differential pulse polarography (DPP).This method has been found to be convenient for the determination ofl-ascorbic acid in all investigated vegetables, as well as in citrus fruits, strawberries, raspberries and currants. The method cannot be recommended forl-ascorbic acid determination in cherries, sour cherries and bananas due to an inhibition of the electrode reaction or to the nature of vitamin C decomposition pathways in certain fruits.
Bestimmung vonl-Ascorbinsäure in frischem und verarbeitetem Obst und Gemüse durch Differential-Puls Polarographie
  相似文献   

18.
薄海波 《色谱》2007,25(6):898-901
建立了多种水果和蔬菜中嘧菌酯残留的气相色谱/质谱分析方法。首先用乙酸乙酯-环己烷(体积比为1∶1)对样品中的嘧菌酯进行超声波提取,经硅胶固相萃取小柱对样品提取液进行净化、富集,采用气相色谱/质谱法以选择离子监测模式(m/z 344,372,388,403定性,m/z 344定量)进行检测。实验结果表明,嘧菌酯在0.01~1.0 mg/kg浓度范围内呈线性,其相关系数r>0.99。在低、中、高3个添加水平,嘧菌酯的回收率为85.2%~98.2%,相对标准偏差为5.8%~21.5%。方法的检测限不大于0.01 mg/kg,定量限不大于0.05 mg/kg。  相似文献   

19.
A capillary electrophoresis-mass spectrometry method for determining procymidone and thiabendazole in apples, grapes, oranges, pears, strawberries and tomatoes is described. Separation is achieved using a buffer of formic acid-ammonium formate at pH 3.5 with 2% of methanol. Fungicide residues present in the sample are preconcentrated by both solid-phase extraction and injection of large sample volumes into the capillary by a stacking technique, to obtain lower detection limits. Ionization is performed at atmospheric pressure in an electrospray type source and detection is carried out using positive ionization and selected ion monitoring modes. The quantitation limits are 0.005 and 0.05 mg kg(-1), and the mean recoveries are 64 and 75% for thiabendazole and procymidone, respectively, with relative standard deviations below 12% (n=5). Real fruit and vegetable samples are analyzed by the proposed method showing that residues of both fungicides are frequently present.  相似文献   

20.
The QuEChERS method was applied to the determination of pesticide residues in vine (Vitis vinifera) leaves by LC-MSMS. The method was validated in-house for 33 pesticides representing 17 different chemical groups, that are most commonly used in grape production. Recoveries for the pesticides tested ranged from 75 to 104%, and repeatability and reproducibility relative standard deviations (RSDr% and RSDRw%) were less than 20%. The method was applied to the analysis of pesticide residues in 17 market brands of vine leaves processed according to three different preservation methods and sampled from the Lebanese market. Dried vine leaves were more contaminated with pesticide residues than those preserved in brine or stuffed vine leaves. The systemic fungicides were the most frequently detected among all the phytosanitary compounds usually applied to grape production. Brine-preserved and stuffed vine leaves contained lower concentrations of the residues but still contained a cocktail of different pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号