首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
An atomic force microscope (AFM) in conjunction with coated colloid probe and cell probe techniques has been used to measure directly the adhesive force between both the protein bovine serum albumin (BSA) and a yeast cell at two different membranes. These were polymeric ultrafiltration membranes of similar MWCO (4000 Da) but of different materials (ES 404 and XP 117, PCI Membrane Systems, UK). The XP 117 membrane is made from a mixture of polymers chosen with the aim of achieving low fouling. The BSA was adsorbed on a 5 μm silica colloid probe formed from a tipless V-shaped AFM cantilever. The cell probe was created by immobilising a single yeast cell on such a tipless cantilever. Measurements were made in 10−2 M NaCl solution. It was found for both protein and cell systems that the adhesive force at the ES 404 membrane was greater than that at the XP 117 membrane. The paper shows that coated colloid probe and cell probe techniques can provide useful means of directly quantifying the adhesion of biological materials to membrane surfaces.  相似文献   

2.
Failure of implanted biomaterials is commonly due to nonspecific protein adsorption, which in turn causes adverse reactions such as the formation of fibrous capsules, blood clots, or bacterial biofilm infections. Current research efforts have focused on modifying the biomaterial interface to control protein reactions. Designing biomaterial interfaces at the molecular level, however, requires an experimental technique that provides detailed, dynamic information on the forces involved in protein adhesion. The goal of this study was to develop an atomic force microscope (AFM)-based technique to evaluate protein adhesion on biomaterial surfaces. In this study, the AFM was used to evaluate (i) protein-protein, (ii) protein-substrate, and (iii) protein-dextran interactions. The AFM was first used to measure the pull-off forces between bovine serum albumin (BSA) tips/BSA surfaces and BSA tips/anti-BSA surfaces. Results from these protein-protein studies were consistent with the literature. More importantly, the successful measurement of antibody-antigen binding interactions demonstrates that both the BSA and anti-BSA proteins retain their folded conformation and remain functional following our immobilization protocol. The AFM was also used to quantify the physiochemical interactions of proteins during adhesion to various self-assembled monolayers (SAMs) and dextran-coated substrates representative of potential biomaterial interface modifications. Dextran, which renders surfaces very hydrophilic, was the only surface coating that BSA protein did not adhere to. Hydrophobic interactions were not found to play a significant role in BSA adhesion. Therefore, the dextran molecules may resist protein adhesion by repulsive steric effects or hydration pressure. Moreover, the AFM-based methodology provides dynamic, quantitative information about protein adhesion at the nanoscale level.  相似文献   

3.
In atomic force microscopy, the cantilevers are mounted under a certain tilt angle alpha with respect to the sample surface. In this paper, we show that this increases the effective spring constant by typically 10-20%. The effective spring constant of a rectangular cantilever of length L can be obtained by dividing the measured spring constant by cos2 alpha(1 - 2D tan alpha/L). Here, alpha is the tilt angle and D is the size of the tip. In colloidal probe experiments, D has to be replaced by the radius of the attached particle. To determine the effect of tilt experimentally, the adhesion force between spherical borosilicate particles and planar silicon oxide surfaces was measured at tilt angles between 0 degrees and 35 degrees. The experiments revealed a significant decrease of the mean apparent adhesion force with a tilt of typically 20-30% at alpha = 20 degrees. In addition, they demonstrate that the adhesion depends drastically on the precise position of contact on the particle surface.  相似文献   

4.
Several authors observed in the past a larger than twofold increase in viscosity of organic liquids under the influence of an electric field of the order of 10(6) V/m. This was called electro viscous effect (EVE). Significantly higher electric fields, of up to 10(8)-10(9) V/m, arise in the electric double layer in solutions close to an electrode. Therefore, the viscosity can be expected to increase at strongly charged liquid-solid interfaces. In more recent years, it was also observed that even in the absence of an externally controlled electric field the viscosity of water can be up to 10(7) times higher close to a hydrophilic surface than in the bulk ("hydrophilic forces"). Here, we present electrochemical atomic force microscopy (EC-AFM) measurements by which we can overcome the critical threshold of the electric field H=10(6) V/m by the control of the potentials applied to both a conducting sample and a conducting tip immersed in solution. Using the EC-AFM, we have investigated for the first time the EVE in an aqueous electrolyte. We can show that by controlling the applied potential, we can control the viscosity and the thickness of the super viscous liquid layer close to the solid interface. Using this technique, we are further able to separate effects on viscosity induced by the hydrophilicity of the surfaces, by the strong nanoconfinement of the liquid between tip and surface, and by the applied electric field.  相似文献   

5.
An Atomic Force Microscope (AFM) has been used to quantify directly the adhesive force between a colloid probe and two polymeric ultrafiltration membranes of similar MWCO (4000 Da) but different materials (ES 404 and XP 117, PCI Membrane Systems (UK)). The colloid probe was made from a polystyrene sphere (diameter 11 μm) glued to a V shaped AFM cantilever. Measurements were made in 10−2 M NaCl solution at pH 8. It was found that the adhesive force at the ES 404 membrane was more than five times greater than that at the XP 117 membrane. As it allows direct quantification of particle/membrane interactions, this technique should be invaluable in the development of new membrane materials and in the elucidation of process behaviour.  相似文献   

6.
7.
Fracture surfaces of Suprasil 2, Herasil 2, AR glass and Duran glass rods have been studied by an atomic force microscope (AFM) in the contact mode. They could be characterized in the fracture mirror, the mist and the hackle zones. The RMS (root mean square) roughness in the fracture mirror of all glasses investigated increased with growing distance from the origin of the fracture. On several fracture surfaces of different glasses steps have been observed, due to fracture in shear mode. Furthermore changes in the fracture surfaces during scanning have also been observed. They are thought to stem from reactions of the freshly broken glass surface with the surrounding atmosphere and forces between the scanning tip and the soft surface.  相似文献   

8.
In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 μm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.  相似文献   

9.
10.
Adhesion forces between tetrahydrofuran (THF) hydrate particles in n-decane were measured using an improved micromechanical technique. The experiments were performed at atmospheric pressure over the temperature range 261-275 K. The observed forces and trends were explained by a capillary bridge between the particles. The adhesion force of hydrates was directly proportional to the contact force and contact time. A scoping study examined the effects of temperature, anti-agglomerants, and interfacial energy on the particle adhesion forces. The adhesion force of hydrates was found to be directly proportional to interfacial energy of the surrounding liquid, and to increase with temperature. Both sorbitan monolaurate (Span20) and poly-N-vinyl caprolactam (PVCap) decreased the adhesion force between the hydrate particles.  相似文献   

11.
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.  相似文献   

12.
The adhesion of microbial cells to metal surfaces in aqueous media is an important phenomenon in both the natural environment and engineering systems. The adhesion of two anaerobic sulfate-reducing bacteria (Desulfovibrio desulfuricans and a local marine isolate) and an aerobe (Pseudomonas sp.) to four polished metal surfaces (i.e., stainless steel 316, mild steel, aluminum, and copper) was examined using a force spectroscopy technique with an atomic force microscope (AFM). Using a modified bacterial tip, the attraction and repulsion forces (in the nano-Newton range) between the bacterial cell and the metal surface in aqueous media were quantified. Results show that the bacterial adhesion force to aluminum is the highest among the metals investigated, whereas the one to copper is the lowest. The bacterial adhesion forces to metals are influenced by both the electrostatic force and metal surface hydrophobicity. It is also found that the physiological properties of the bacterium, namely the bacterial surface charges and hydrophobicity, also have influence on the bacteria-metal interaction. The adhesion to the metals by Pseudomonas sp. and D. desulfuricans was greater than by the marine SRB isolate. The cell-cell interactions show that there are strong electrostatic repulsion forces between bacterial cells. Cell probe atomic force microscopy has provided some useful insight into the interactions of bacterial cells with the metal surfaces.  相似文献   

13.
A friction coefficient map of the surface of an immiscible polymer blend has been constructed using data obtained with the atomic force microscope. Spatially resolved friction coefficients, obtained from gradients of linear plots of frictional force versus applied load, were used to construct the map, with corresponding frictional forces being derived from lateral force data and the lateral spring constant. Values of the friction coefficient were confirmed using an Si3N4/Si3N4 couple, for which literature values were available. Excellent agreement with the literature was observed through the use of this method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Atomic force microscopy (AFM) has been successfully used to study the activation energy for evaporation of pentaerythritol tetranitrate (PETN) nanoislands formed by spin coating. These islands are annealed isothermally in the temperature range of 30-70 degrees C for a given time and are scanned with AFM in contact mode at room temperature. The volume of these islands does not change significantly up to about 35-40 degrees C indicating that sublimation is not significant below 40 degrees C. Above 40 degrees C, the islands start shrinking, and the rate of weight loss is analyzed as a function of temperature. The activation energy of evaporation using AFM was found to be similar to that for bulk PETN crystals using thermogravimetric analysis (TGA) at higher temperatures (110-135 degrees C). These results demonstrate that AFM is a useful tool to measure thermodynamic properties with a nanoscale probe.  相似文献   

15.
We report observations of localized growth on the (1014) surface of single-crystal CaCO3 in supersaturated solutions while scanning with the tip of an atomic force microscope (AFM). At low contact forces, AFM scanning strongly enhances deposition along preexisting steps. This enhancement increases rapidly with increasing solution supersaturation, and is capable of filling in multilayer etch pits to produce defect-free surfaces at the resolution of the AFM. Attempts to achieve similar deposition rates in the absence of scanning require high supersaturations that produce three-dimensional crystal nuclei, which are important defects. Localized deposition produced by drawing the AFM tip back and forth across step edges can produce monolayer deposits extending well over a micron from the scanned area. These tip-induced deposits provide convincing evidence for the importance of ledge diffusion in calcite crystal growth.  相似文献   

16.
Atomic force microscopy has been used for direct visualization of the wrapping of DNA around 30-nm-sized functionalized gold nanoparticles for the first time. The morphology of the complexes seems to be dictated by the relative concentration of the nanoparticles and DNA. A higher concentration of the former leads to the formation of a network of nanoparticles assembled on DNA. This assembly pattern seems to be significantly different from the manner in which cationically modified gold nanoparticles of smaller size (< 5 nm) arrange linearly on DNA, as shown in the literature. A DNA-gold nanoparticle can be developed as a model system for in vitro studies on the mechanism of DNA condensation and also for developing novel methods of nanoparticle self-assembly on the DNA template.  相似文献   

17.
The atomic force microscope has been used in the attractive (non-contact) force mode to produce images of individual nanometer-size clusters pre-formed in the gas phase and deposited on a wide variety of atomically-flat substrates. Using this technique, it is now possible to reliably image pre-formed clusters in their as-deposited positions. Studies of nanometer-size Au clusters supported on highly oriented pyrolitic graphite clearly show how the clusters are distributed across the scanned region. Cluster coverages inferred from atomic force studies are compared to those obtained from TEM studies of amorphous carbon grids simultaneously exposed to the same cluster beam.  相似文献   

18.
Atomic force microscopy (AFM) is known to be capable of measuring local surface charge density based on the DLVO model. However, it has failed to distinguish charge density difference between the extracellular and cytoplasmic sides of purple membrane (PM) in previous studies. In this paper, tapping-mode AFM with thioglycolate-modified tips was used to image PM in buffers of different salt concentrations. When imaged in 25 mM KCl buffer, the topography of membranes appeared to be of two different types, one flat and the other domelike. Such a difference was not observed in buffers of high salt concentrations. This suggests that the topography variation results from differences in electrostatic interaction between the AFM tip and the different membrane surfaces. With images of papain-digested PM and high-resolution images of membrane surface structure, we proved that the membrane surfaces with flat topography were on the extracellular side while the surfaces with domelike topography were on the cytoplasmic side. Hence, this provides a straightforward method to distinguish the two sides of PM without the requirement of high-resolution imaging. Force-distance curves clearly demonstrated the different tip-sample interactions. The force curves recorded on the extracellular side of PM were consistent with the DLVO model, so its surface charge density can be estimated well. However, the curves recorded on the cytoplasmic side had a much longer decay length, which is supposed to be relevant to the flexibility of the C-terminus of bacteriorhodopsin (bR).  相似文献   

19.
Colloidal forces between bitumen surfaces in aqueous solutions were measured with an atomic force microscope (AFM). The results showed a significant impact of solution pH, salinity, calcium and montmorillonite clay addition on both long-range (non-contact) and adhesion (pull-off) forces. Weaker long-range repulsive forces were observed under conditions of lower solution pH, higher salinity and higher calcium concentration. Lower solution pH, salinity and calcium concentration resulted in a stronger adhesion forces. The addition of montmorillonite clays increased long-range repulsive forces and decreased adhesion forces, particularly when co-added with calcium ions. The measured force profiles were fitted with extended DLVO theory to show the repulsive electrostatic double layer and attractive hydrophobic forces being the dominant components in the long-range forces between the bitumen surfaces. At a very short separation distance (less than 4–6 nm), a strong repulsion of steric origin was observed. The findings provide a fundamental understanding of bitumen emulsion stability and a mechanism of bitumen “aeration” in bitumen recovery processes from oil sands.  相似文献   

20.
Listeria monocytogenes is a facultative intracellular Gram-positive bacterium that is widely distributed in the environment. Despite being pathogenic at the species level, L. monocytogenes in fact comprises a diversity of strains from pathogenic ones that can result in disease and/or mortality to others that are relatively avirulent. The main goal of the current study was to answer the question on whether enhanced binding or attachment of L. monocytogenes to inert surfaces bears any relationship to pathogenicity in food-borne isolates. To answer this question, the nanoscale adhesion forces of eight L. monocytogenes strains that vary in their pathogenicity levels to a model surface of silicon nitride were quantified using atomic force microscopy. The strains used were the highly pathogenic (EGDe, 874, 1002, ATCC 19115), the intermediate pathogenic (ATCC 19112, ATCC 19118), and the non pathogenic (ATCC 15313 and HCC25). Our results indicate that the average nanoscale adhesion (in nN) and the 50% lethal dose (LD50) of strain virulence quantified in mice are logarithmically correlated according to: (nN) = −0.032 ln (LD50) + 1.040, r2 = 0.96. Such correlation indicates that nanoscale adhesion could potentially be used as a design criterion to distinguish between virulent and avirulent L. monocytogenes strains. Finally, stronger adhesion of virulent strains to inert surfaces modeled by silicon nitride might be a way for pathogenic strains to survive better in the environment and thus increase their likelihood of infecting animals or humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号