首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Expressions are obtained for the intensity and the quantum yield of the sensitized luminescence of the chromophore that plays the role of a reaction center in the simplest model trichromophore molecular [lightcollecting] antenna which is so constructed and so oriented in space that the irradiation photons coherently excite its other two chromophorespigments. The quantum electrodynamics formalism which takes into account the radiative dissipative interaction between the pigments and the reaction center of the antenna was used. The comparative analysis of the obtained expressions with the corresponding expressions for the luminescence of a bichromophore molecular system, differing from the trichromophore antenna by the absence of one of the pigments, has shown that the collective dissipative interaction of the pigments with the reaction center of the antenna can be considered as a highly efficient mechanism of [light collection] in molecular antennas.  相似文献   

2.
Biliproteins are photosynthetic light-harvesting proteins, which transfer excitons with high efficiencies over relatively long distances until they arrive at a photosynthetic reaction center. Purified R-phycoerythrin (isolated from a red alga) and C-phycoerythrin (isolated from a cyanobacterium), each of which contains several chromophores, were studied by a combination of fluorescence emission, fluorescence excitation polarization, and absorption methods. The polarization spectra of both these biliproteins showed that there was a minimum of two spectrally distinct sensitizing chromophores, which, after absorbing photons, transfer excitons to the lowest-energy (fluorescing) chromophores. Some of these spectroscopic data were used to deconvolute the absorption spectra into the spectra of the two sensitizing and one fluorescing chromophores. It was shown that the higher-energy sensitizing chromophore could readily transfer its excitation energy to the fluorescing chromophore using the lower-energy sensitizing chromophore as an intermediary. However, there was sufficient spectral overlap between the higher-energy sensitizing chromophore and the fluorescing chromophore so that direct transfer between them could not be ruled out.  相似文献   

3.
4.
Abstract

By the bombardment of gaseous molecules with monoenergetic electrons the molecules can be electronically excited and/or fragmented, depending upon the energy supplied by the electrons. Any fragments which may be produced also have the possibility of being produced in electronically (as well as vibrationally and rotationally) excited states. The electronically excited molecules and fragments both possess the possibility of radiative decay (fluorescence). The measurement of this fluorescence as a function of both electron energy and photon wavelength is termed “electron-impact induced fluorescence spectroscopy.” A plot of fluorescence intensity as a function of the electron energy at a given photon wavelength is generally referred to as an “excitation function,” which is exactly analogous to the excitation spectrum which can be obtained in conventional (optically excited) fluorescence spectrometry. A plot of the fluorescence intensity as a function of photon wavelength at a given electron energy is termed the “fluorescence spectrum.” A three dimensional plot of the fluorescence intensity as a function of both the photon wavelength and the electron energy may also be constructed, and is referred to as an “excitation contour plot.”  相似文献   

5.
Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of the coupling with the protein environment and by the efficiency of the triplet state quenching. Based on single molecule and hole burning data, we envisage the dimeric nature of the strongly phonon coupled red-most Chl state.  相似文献   

6.
7.
Blinking (stochastic intermittence) of fluorescence is a quite common phenomenon that accompanies the emission of single quantum objects-organic chromophore molecules, quantum dots, and nanocrystals. It is demonstrated that fluorescence blinking of single organic molecules embedded into a polymer matrix including the occurrence of “grey” states is due to tunneling transitions in the two-level systems (TLSs) of the matrix. The repeated registration of fluorescence excitation spectra of single molecules (SMs) is used for our analysis. The statistics of fluorescence blinking of an SM is directly related to conformational changes (tunneling transitions in TLSs) in its immediate vicinity. Individual parameters of the corresponding elementary excitation are also determined.  相似文献   

8.
The mutual orientation of pigments in living organisms, for example the antenna pigments in photosynthetizing Organisms, have strong influence on molecular processes such as excitation energy transfer which are closely related to physiological function of photosynthetizing apparatus of plants, algae and bacteria [l].  相似文献   

9.
The fluorescence spectrum of a three-level atom interacting with strong electromagnetic monochromatic field is obtained. The calculations are based on the quantum “fluctuation-regression theorem”. It is shown, that the fluorescence spectrum contains five lines, the properties of which are discussed.  相似文献   

10.
宋春元  何文亮  刘坤向  刘莹 《光子学报》2008,37(6):1200-1204
利用偏振荧光光谱和偏振激发光谱研究了乙醚溶液中荧光分子跃迁偶极距的取向特征.实验结果表明,在垂直线偏振光照射下,乙醚溶液发射出峰值位于305 nm的荧光谱,对应的最佳激励光波长为256 nm.由偏振激发光谱分析得到荧光体的吸收跃迁偶极矩和发射跃迁偶极矩间夹角α的变化规律,揭示了荧光去偏振过程:在粘性溶液中的荧光分子具有一定的偶极取向,α随激发光波长发生变化,当激发波长接近最佳激发光波长时,吸收跃迁偶极矩和发射跃迁偶极矩间趋于平行,荧光的退偏效果较弱,偏振度最大.研究结果能为分子空间取向特征的理论研究提供参考.  相似文献   

11.
The fluorescence emission spectrum of single peripheral light-harvesting (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila exhibits remarkable dynamics on a time scale of several minutes. Often the spectral properties are quasi-stable; sometimes large spectral jumps to the blue or to the red are observed. To explain the dynamics, every pigment is proposed to be in two conformational substates with different excitation energies, which originate from the conformational state of the protein as a result of pigment-protein interaction. Due to the excitonic coupling in the ring of 18 pigments, the two-state assumption generates a substantial amount of distinct spectroscopic states, which reflect part of the inhomogeneous distributed spectral properties of LH2. To describe the observed dynamics, spontaneous and light-induced transitions are introduced between the two states. For each ‘realization of the disorder’, the spectral properties are calculated using a disordered exciton model combined with the modified Redfield theory to obtain realistic spectral line shapes. The single-molecule fluorescence peak (FLP) distribution, the distribution dependence on the excitation intensity, and the FLP time traces are well described within the framework of this model.  相似文献   

12.
考查反渗透(RO)膜处理渗滤液前所采用的预处理工艺对致膜有机污染物的去除效果,为RO膜预处理工艺的选择提供参考,采用同步荧光光谱、三维荧光光谱、紫外-可见全光谱对某垃圾焚烧厂渗滤液原液及其经“生化(UASB+A/O)+超滤”预处理工艺各级出水进行不同分子量分布区间的分析。同步荧光光谱表明,预处理工艺总体能有效去除波长在250~320 nm各分子量区间的以及波长>320 nm、分子量>1KDa的DOM;三维荧光光谱表明,预处理工艺总体能有效去除低激发波长类酪氨酸、低激发波长类色氨酸及高激发波长类色氨酸及分子量>1KDa的类富里酸和高激发波长类酪氨酸;紫外-可见全光谱表明,预处理工艺总体能有效去除分子量>1KDa带π—π*跃迁的DOM和各分子量区间的带多个共轭体系苯环结构的DOM。结果显示,将“生化(UASB+A/O)+超滤”组合工艺作为RO膜法处理焚烧厂渗滤液的预处理工艺时,还需加强同步荧光范围>320 nm、分子量<1 KDa、带π—π*跃迁的类富里酸及高激发波长类酪氨酸的去除。  相似文献   

13.
刘莹  刘诚  倪晓武  骆晓森  陆建  沈中华 《光学学报》2006,26(10):580-1584
针对乙醇水溶液荧光发射的四个特征参量进行了研究,得出了该溶液发射荧光光子的时域和频域特征参量。发射光谱和激发光谱表明乙醇水溶液中含有三个结构不同的发光物质,其发射峰分别位于290 nm,305 nm和330 nm处,与其相对应的最佳吸收峰为265 nm,280 nm和236 nm。荧光强度随溶液中乙醇与水体积混合比的变化规律也证实了三种不同发光结构的存在。在荧光光谱峰值波长处分别监测其荧光强度随时间的衰变过程,将获得的荧光衰减动力学曲线采用指数方法拟合并进行解卷积处理,测试的荧光寿命分别对应8 ns,12 ns,25 ns。结合乙醇水溶液荧光发射的四个特征参量可以看出:乙醇分子和水分子发生团簇作用形成了三个新的分子结构从而可发射具有不同能量的荧光光子。该研究结果能为乙醇水分子的团簇结构研究提供参考。  相似文献   

14.
采用飞秒时间分辨荧光光谱学对PSⅡ颗粒复合物在83 K,160 K,273 K下进行研究,实验表明随温度升高,光谱加宽.并且发现在PSⅡ颗粒复合物中至少存在以下几种特征Chl分子:Chl b640639,Chl b645640,Chl a663660,Chl a668667,Chl a676673,Chl a681680,Chl a682680/681,Chl a688/689684,685,Chl a698688.在不同的温度下,参与能量传递的色素分子传能途径各不相同,但都有一个共同点:在到达反应中心之前能量传递高效进行,绝大多数能量传递到了反应中心,而在680 nm之后的波段,能量损耗明显增大,这是由于电子传能受阻,能量绝大多数以荧光形式耗散.对荧光衰减曲线进行时间拟合,得到四组时间常数:30~40 ps,260 ps,550~670 ps,1~8 ns.几个ns的长寿命组分,反映了两个能量传递过程,即与基对态P680+pheo-,以及能量传递过程中Chl a分子由激发态辐射荧光衰退到基态以辐射荧光形式丢失能量的过程有关.550~670 ps的时间组分,反映的是部分电荷重组的过程.260 ps的组分只在83 K出现,应归于LHCⅡ中的Car分子经中间传递体传能到Chl b 639分子后继续将能量传递到反应中心P680的时间.30~40 ps的时间组分为LHCⅡ中的Chl分子吸收光能后通过一系列中间体将能量传递到反应中心,Chl a680/681分子的能量传递过程.  相似文献   

15.
叶绿体延迟荧光中730nm成分产生机理的光谱学研究   总被引:1,自引:0,他引:1  
叶绿体685 nm延迟荧光成分被认为源于PSⅡ作用中心的电荷复合。利用多种光谱学测量手段研究了叶绿体延迟荧光光谱中730 nm峰的产生机制。不同浓度下叶绿体延迟荧光光谱实验结果表明:初始随浓度的增加,延迟荧光光谱中685和730 nm成分强度均增强;当浓度增加到7.8 μg·mL-1时,685 nm成分强度达最大,730 nm成分强度继续上升;当浓度增加到31.2 μg·mL-1时,延迟荧光光谱中730 nm成分强度达最大,而685 nm成分已明显下降。吸收光谱实验结果表明:A685/A730在叶绿体浓度增加的过程中几乎不变。叶绿体730 nm荧光成分的激发光谱实验结果表明:685 nm光对730 nm荧光有较高的激发效率。上述实验结果表明叶绿体延迟荧光光谱中730 nm峰是由PSⅡ所发685 nm成分激发PSⅠ所产生的荧光。同一浓度下叶绿体延迟荧光光谱波形随延迟时间(1~9 s)的不变性进一步证明了这一结论。  相似文献   

16.
We have obtained and analyzed the absorption, fluorescence, and fluorescence excitation spectra of indole vapor, N-acetyl-L-tryptophan vapor, and 3-indole aldehyde vapor. From analysis of the dependence of the fluorescence spectrum of the free indole molecules on the wavelength of the exciting radiation λex, it follows that emission of fluorescence occurs when the molecules undergo a transition from the one electronically excited state 1Lb. The fluorescence spectra of the studied compounds are insignificantly different, suggesting a major role for the indole chromophore in formation of the compounds. The absorption spectrum of N-acetyl-L-tryptophan, in which the group of atoms is added to the indole ring through a-C-C bond, is similar to the spectrum of indole, while the spectrum of 3-indole aldehyde is significantly different from the indole spectrum due to the effect of the C=O group conjugated with the indole ring. The fluorescence excitation spectra are considerably different from the absorption spectra. This is associated with the strong dependence of the quantum yield for the free molecules on λex. Qualitatively, they are mirror-symmetric to the fluorescence spectra of the stodied compounds. Analysis of the data obtained provides a basis for assuming that in the case of free molecules of indole and its derivatives, the 1La absorption in the extreme long-wavelength region of the spectrum does not overlap 1Lb absorption. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 218–222, March–April, 2007.  相似文献   

17.
During the recent restoration of two large-dimension paintings by Murillo, entitled “Miracle of the loaves and fishes” and “Moses and the water from the rock of Horeb,” several studies about the materials employed for their execution were carried out. Macro X-ray fluorescence scanning technique was performed on both works complemented by point X-ray fluorescence and stratigraphic analyses, in order to characterize the different components of the paintings (i.e., ground layer, pigments, and binders). The results allowed us to better elucidate Murillo painting technique and his creative process. Ground layer was prepared in the usual fashion of the artist, using earths, calcium carbonate, iron oxide pigments, and white lead. The polichromy is composed of lead white mixed with various pigments, depending on the colour tone to be obtained in the pictorial composition: Red and yellow ochres, vermilion, azurite, smalt, and lead-tin yellow were the main pigments identified during our study. Finally, the presence of previous conservation treatments was evidenced by detecting pigments (zinc white, Prussian blue, etc.) not coeval with the artist palette.  相似文献   

18.
The Redfield theory-based model of excitation energy transfer in chromophore ensembles within dissipative environment is proposed. Application of the multipole expansion to an operator of interaction between the chromophore molecules and the environment together with some assumptions about the latter led to the closed-form expressions for the elements of the dissipation tensor. These expressions relate the rates of transition between eigenstates of a chromophore ensemble with the spectral and electronic properties of an environment and the chromophore molecules. For several model cases the exact solution of the Redfield equations was obtained.  相似文献   

19.
High-energy proton induced fission is studied in the framework of a two-step model. In the first step, the projectile penetrates the target nucleus, knocks out few nucleons and leaves the residual nucleus with a spectrum of excitation energies depending upon the number of projectile-nucleon collisions. This stage is described in terms of a simplified version of Glauber's multiple-scattering theory. The second stage in which the residual nucleus fissions, is treated by assuming phenomenological expressions for the dependence of the fission probability on excitation energy which take into account the onset of fragmentation at a certain “crack” energy. Comparison with experimental data suggests that high energy fission of heavy nuclei proceeds in a way similar to low-energy fission. Light nuclei, however, require a more violent fission mechanism.  相似文献   

20.
《Journal of luminescence》1986,35(5):267-275
The resonant secondary emission spectrum of anthracene crystals is investigated by applying simultaneous time and frequency resolution. Under preresonant excitation the secondary emission of polaritons has an essentially nonexponential time behavior that depends strongly on the excitation frequency. At larger detunings the “Raman-like” lines, shifting together with excitation, have “fast” and a “slow” component, which correspond to different channels in populating the final polariton states. It is shown that such preresonant excitation can create a long-lived (≈1 ns) population of excitonic polaritons in the crystal. Group velocity plays the main role in the polariton dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号