首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono‐ and hetero‐ binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)2Ir(dpm‐py)] family (Ppy=2‐phenylpyridine, dpm‐py=5‐(4‐pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5 positions on the pyridyl unit diminishes the non‐radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge‐transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6‐diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90 %. However, they do limit the charge‐transfer character of the acceptor’s excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

2.
Using ligands based on either an acetylacetonate or a dipyrrin moiety appended with pyridyl groups, a series of novel heteroleptic copper(II) and cobalt(III) complexes combining both chelate units such as (acacpy(2))Cu(dpm-py) and (acacpy(2))Co(dpm-py)(2) (acacpy(2) = 1,3-bis(4-pyridyl)-1,3-propanedionate; dpm-py = 5-(4-pyridyl)dipyrrin) have been prepared and fully characterized. These two complexes were obtained upon reaction of dpm-py with the (acacpy(2))M homoleptic species (M = Cu(II), Co(II)). In the solid state, the (acacpy(2))Cu(dpm-py) complex behaves as a self-complementary metallatecton and leads to the formation of a 1D coordination polymer (CP) through the coordination of a peripheral pyridyl group to the copper centre. Contrastingly, the octahedral (acacpy(2))Co(dpm-py)(2) complex featuring a coordinatively saturated Co(III) centre crystallizes as an isolated mononuclear species. In order to generate heterometallic CPs, both complexes have been used as metallatectons upon their combination with different silver(I) salts. Upon reaction of (acacpy(2))Cu(dpm-py) with Ag(BF(4)) or Ag(TfO), 2- and 3-D heterometallic networks were obtained, respectively. In both cases, sheet type arrangements resulting from the binding of Ag(+) cations by three peripheral pyridyl groups were observed. These 2D sheets are further interconnected through Ag-π interactions with the pyrrolic rings. Under the same conditions, the combination of (acacpy(2))Co(dpm-py)(2) with Ag(TfO) leads to two networks differing by their connectivity patterns and dimensionality. Interestingly, whereas no Ag-π interactions were observed for the 2D network, a combination of coordination bonding with the pyridyl moieties and Ag-π interactions was detected for the 1D architecture.  相似文献   

3.
Lo KK  Chung CK  Lee TK  Lui LH  Tsang KH  Zhu N 《Inorganic chemistry》2003,42(21):6886-6897
We report the synthesis, characterization, and photophysical and electrochemical properties of thirty luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)(2)(N-N)](PF(6)) (HN-C = 2-phenylpyridine, Hppy; 2-(4-methylphenyl)pyridine, Hmppy; 3-methyl-1-phenylpyrazole, Hmppz; 7,8-benzoquinoline, Hbzq; 2-phenylquinoline, Hpq; N-N = 4-amino-2,2'-bipyridine, bpy-NH(2); 4-isothiocyanato-2,2'-bipyridine, bpy-ITC; 4-iodoacetamido-2,2'-bipyridine, bpy-IAA; 5-amino-1,10-phenanthroline, phen-NH(2); 5-isothiocyanato-1,10-phenanthroline, phen-ITC; 5-iodoacetamido-1,10-phenanthroline, phen-IAA). The X-ray crystal structure of [Ir(mppz)(2)(bpy-NH(2))](PF(6)) has also been investigated. Upon irradiation, all the complexes display intense and long-lived luminescence under ambient conditions and in 77-K glass. On the basis of the photophysical and electrochemical data, the emission of most of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi(N-N)) character. In some cases, triplet intraligand ((3)IL) (pi --> pi)(N-N or N-C(-)) excited states have also been identified. In view of the specific reactivity of the isothiocyanate and iodoacetamide moieties toward the primary amine and sulfhydryl groups, respectively, we have labeled various biological molecules with a selection of these luminescent iridium(III) complexes. The photophysical properties of the luminescent conjugates have been investigated. In addition, a heterogeneous assay for digoxin has also been designed on the basis of the recognition of biotinylated anti-digoxin by avidin labeled with one of the luminescent iridium(III) complexes.  相似文献   

4.
The synthesis, structure, and photophysical and electrochemical properties of cyclometalated iridium complexes with ancillary cyano and isocyanide ligands are described. In the first synthetic step, cleavage of dichloro-bridged dimers [Ir(N=C)2(mu-Cl)]2 (N=C = 2-phenylpyridine, 2-(2-fluorophenyl)pyridine, and 2-(2,4-difluorophenyl)pyridine) by isocyanide ligands gave monomeric species of the types Ir(N=C)2(RNC)(Cl) (RNC = t-butyl isocyanide, 1,1,3,3-tetramethylbutyl isocyanide, 2-morpholinoethyl isocyanide, and 2,6-dimethylphenyl isocyanide). In turn, the chloride was replaced by cyanide giving Ir(N=C)2(RNC)(CN). The X-ray structures for two of the complexes show that the trans-pyridyl/cis-phenyl geometry of the parent dimer is preserved, with the ancillary ligands positioned trans to the cyclometalated phenyls. The cyano complexes all display strong blue photoluminescence in ambient, deoxygenated solutions with the first lambdamax ranging from 441 to 458 nm, quantum yields spanning 0.60 to 0.75, and luminescent lifetimes of 12.0-21.4 mus. A lack of solvatochromism and highly structured emission indicate that the lowest energy excited state is triplet ligand centered with some admixture of singlet metal-to-ligand charge-transfer character.  相似文献   

5.
Lo KK  Lau JS 《Inorganic chemistry》2007,46(3):700-709
Four luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)2(N-N)](PF6) (HN-C = 2-(4-(N-((2-biotinamido)ethyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC2NH-biotin, N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (1a); N-N = 4,7-diphenyl-1,10-phenanthroline, Ph2-phen (2a); HN-C = 2-(4-(N-((6-biotinamido)hexyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC6NH-biotin, N-N = Me4-phen (1b); N-N = Ph2-phen (2b)), each containing two biotin units, have been synthesized and characterized. The photophysical and electrochemical properties of these complexes have been investigated. Photoexcitation of these iridium(III) diimine bis(biotin) complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission is assigned to a triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Ir) --> pi*(N-N)) excited state. The emissive states of complexes 1a,b are probably mixed with some 3IL (pi --> pi*) (Me4-phen) character. The interactions of these iridium(III) diimine bis(biotin) complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays and emission titrations. The potential for these complexes to act as cross-linkers for avidin has been examined by resonance-energy transfer- (RET-) based emission quenching experiments, microscopy studies using avidin-conjugated microspheres, and HPLC analysis.  相似文献   

6.
Luminescent cyclometalated rhodium(III) and iridium(III) complexes of the general formula [M(ppy) 2(N (wedge)N)][PF 6], with N (wedge)N = Hcmbpy = 4-carboxy-4'-methyl-2,2'-bipyridine and M = Rh ( 1), Ir ( 2) and N (wedge)N = H 2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine and M = Rh ( 3), Ir ( 4), were prepared in high yields and fully characterized. The X-ray molecular structure of the monocarboxylic iridium complex [Ir(ppy) 2(Hcmbpy)][PF 6] ( 2) was also determined. The photophysical properties of these compounds were studied and showed that the photoluminescence of rhodium complexes 1 and 3 and iridium complexes 2 and 4 originates from intraligand charge-transfer (ILCT) and metal-to-ligand charge-transfer/ligand-centered MLCT/LC excited states, respectively. For comparison purposes, the mono- and dicarboxylic acid ruthenium complexes [Ru(DIP) 2(Hcmbpy)][Cl] 2 ( 5) and [Ru(DIP) 2(H 2dcbpy)][Cl] 2 ( 6), where DIP = 4,7-diphenyl-1,10-phenanthroline, were also prepared, whose emission is MLCT in nature. Comparison of the photophysical behavior of these rhodium(III), iridium(III), and ruthenium(II) complexes reveals the influence of the carboxylic groups that affect in different ways the ILCT, MLCT, and LC states.  相似文献   

7.
A new series of iridium cyclometalated complexes with a C/N/C dppy-type ligand and a N/N/N tpy-type ligand have been synthesized and characterized by various techniques such as mass spectrometry, 1H and 13C NMR, cyclic voltammetry, both steady-state and time-resolved emission and absorption studies, and time-dependent DFT (TDDFT) calculations. The complexes exhibit strong visible absorptions and long-lived (1.6-2.0 micros) emissions (lambdamax, ca. 680 nm) in room-temperature solution. DFT calculations on the ground-state geometry match that of an X-ray crystal structure. TDDFT calculations give accurate predictions of the electronic absorption energies and intensities, while geometry optimizations on the lowest energy triplet state give accurate energies for the emission. Examination of the relevant molecular orbitals shows that the inherent asymmetry of the coordination environment offers a unique directional character to the emitting excited state, which is predominately LLCT (dppy --> tpy) in nature.  相似文献   

8.
A new series of luminescent mu-pyrazolate-bridged cyclometalated platinum binuclear complexes having the formula CwedgeNPt(mu-pz')2PtCwedgeN (CwedgeN = 2-(2,4-difluorophenyl)pyridyl, pz' = pyrazolate for 1, 3,5-dimethylpyrazolate for 2, 3-methyl-5-tert-butylpyrazolate for 3, and 3,5-bis(tert-butyl)pyrazolate for 4) have been synthesized and characterized. The two Pt(CwedgeN) moieties are bridged by two mu-pyrazolate ligands in an exo-bidentate fashion. A mononuclear complex with an isolated Pt center, CwedgeNPt(pz)2BEt2, 5, is also described. The X-ray crystal structures of 1-4 show the following Pt-Pt spacings: 1 = 3.3763(7) A, 2 = 3.1914(9) A, 3 = 3.0457(7) A, and 4 = 2.8343(6) A. At 77 K, the emission energy of the complexes varies from blue (for 1, 2, and 5) to green (for 3) to red (for 4). The changes in the photophysical properties of the binuclear complexes can be correlated with the decreasing Pt-Pt distance; the emissive state changes from a mixed ligand center triplet/metal-to-ligand charge transfer excited state (for 1 and 2) to a lower-energy, Pt-Pt metal-metal-to-ligand charge transfer state (for 3 and 4).  相似文献   

9.
The first examples of iridium(III) complexes containing a terdentate, N--C--N-coordinated 1,3-di(2-pyridyl)benzene derivative, cyclometalated at C2 of the benzene ring, are reported. This mode of binding becomes significant only if competitive cyclometalation at C4/C6 is blocked, and the ligand 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) has been prepared to achieve this condition. The charge-neutral complex [Ir(dpyx)(dppy)], 2, (dppyH(2) = 2,6-diphenylpyridine) has been isolated, containing dpyx and dppy bound to the metal through one and two carbon atoms, respectively. A terpyridyl analogue, [Ir(dpyx)(ttpy)](PF(6))(2), 3, (ttpy = 4'-tolylterpyridine) has also been prepared and its X-ray crystal structure determined, confirming the N--C--N binding mode of dpyx. Complex 2 emits strongly in degassed solution at 295 K (lambda(max) = 585 nm, phi = 0.21, tau = 3900 ns, in CH(3)CN). In solution, the excited state can also undergo photodissociation, through cleavage of one of the Ir-C(dppy) bonds.  相似文献   

10.
Lee PK  Law WH  Liu HW  Lo KK 《Inorganic chemistry》2011,50(17):8570-8579
A series of luminescent cyclometalated iridium(III) polypyridine complexes containing a di-2-picolylamine (DPA) moiety [Ir(N^C)(2)(phen-DPA)](PF(6)) (phen-DPA = 5-(di-2-picolylamino)-1,10-phenanthroline) (HN^C = 2-phenylpyridine, Hppy (1a), 2-(4-methylphenyl)pyridine, Hmppy (2a), 2-phenylquinoline, Hpq (3a), 4-(2-pyridyl)benzaldehyde, Hpba (4a)) and their DPA-free counterparts [Ir(N^C)(2)(phen-DMA)](PF(6)) (phen-DMA = 5-(dimethylamino)-1,10-phenanthroline) (HN^C = Hppy (1b), Hmppy (2b), Hpq (3b), Hpba (4b)) have been synthesized and characterized, and their photophysical and electrochemical properties investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dπ(Ir) → π*(N^N)) or triplet intraligand ((3)IL) (π → π*) (N^C) excited state and with substantial mixing of triplet amine-to-ligand charge-transfer ((3)NLCT) (n → π*) (N^N) character, depending on the identity of the cyclometalating and diimine ligands. Electrochemical measurements revealed an irreversible amine oxidation wave at ca. +1.1 to +1.2 V vs saturated calomel electrode, a quasi-reversible iridium(IV/III) couple at ca. +1.2 to +1.6 V, and a reversible diimine reduction couple at ca. -1.4 to -1.5 V. The cation-binding properties of these complexes have been studied by emission spectroscopy. Upon binding of zinc ion, the iridium(III) DPA complexes displayed 1.2- to 5.4-fold emission enhancement, and the K(d) values determined were on the order of 10(-5) M. Job's plot analysis confirmed that the binding stoichiometry was 1:1. Additionally, selectivity studies showed that the iridium(III) DPA complexes were more sensitive toward zinc ion among various transition metal ions examined. Furthermore, the cytotoxicity of these complexes toward human cervix epithelioid carcinoma cells have been studied by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay and their cellular-uptake properties by inductively coupled plasma mass spectrometry and laser-scanning confocal microscopy.  相似文献   

11.
Russian Journal of Coordination Chemistry - New cyclometalated iridium(III) complexes, NBEpicIr(Ppy)2 (I) and NBEpicIr(Dfppy)2 (II), were synthesized (NBEpicH =...  相似文献   

12.
Heteroleptic cyclometalated iridium(III) complexes ( Ir1 – Ir5 ) featuring piz-based ligands and acetylacetone ancillary ligand are synthesized and characterized. Their photophysical and electrochemical properties were studied, and DFT calculations were used to further support the experiment results. All the complexes emit yellow color with quantum yields of 12.2–56.5% in dichloromethane solution at room temperature, and the emission originates from a hybrid 3MLCT/3ILCT/3LLCT excited state.  相似文献   

13.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

14.
用密度泛函理论PBE0法计算配合物[Fe(CO)x(Ph2Ppy)y(HgCl2)z](1: x=4, y=1, z=0; 2: x=3, y=2, z=0; 3: x=4, y=1, z=1; 4: x=3, y=2, z=1; 5: x=4, y=1, z=2; 6: x=3, y=2, z=2)的几何构型, 用PBE0-GIAO法计算配合物1~6的31P化学位移. 计算结果表明, 含2个Ph2Ppy的配合物5和6的Fe—Hg相互作用略大于含单个Ph2Ppy的配合物3和4. 含2个HgCl2的配合物4和6存在Fe—Hg σ键, 比含单个HgCl2的配合物3和5的Fe—Hg相互作用强, 配合物3和5的Fe—Hg相互作用以Fe→Hg和Fe←Hg离域为主. 配合物3中Fe的负电荷比5的小, 故配合物5的Fe—Hg相互作用比配合物3的强且Fe→Hg离域比较显著, 而配合物3的Fe←Hg离域更显著. Fe—Hg相互作用增大了双核配合物中P核周围的电子密度, 其31P化学位移比相应的单核配合物小, 且含2个HgCl2的双核配合物的31P化学位移更小. 含单个Ph2Ppy的配合物的31P化学位移小于含2个Ph2Ppy的配合物.  相似文献   

15.
A series of phosphorescent cyclometalated iridium complexes with 2,5‐diphenylpyridine‐based ligands has been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The complexes have the general structure (CN)2Ir(acac), where CN is a monoanionic cyclometalating ligand [e.g. 2,5‐diphenylpyridyl (dppy), 2,5‐di(4‐methoxyphenyl)pyridyl (dmoppy), 2,5‐di(4‐ethoxyphenyl)pyridyl (deoppy) and 2,5‐di(4‐ethylphenyl)pyridyl (deppy)]. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (dppy)2Ir(acac) has been characterized using X‐ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) was carried out using B3LYP density functional theory. The highest occupied molecular orbital (HOMO) level is a mixture of Ir and ligand orbitals, while the lowest occupied molecular orbital (LUMO) is predominantly dppy ligand‐based. Electrochemical studies showed the oxidation potentials of (dmoppy)2Ir(acac), (deoppy)2Ir(acac), (deppy)2Ir(acac) were smaller than that of (ppy)2Ir(acac), while the oxidation potential of (dppy)2Ir(acac) was larger relative to (ppy)2Ir(acac). The 10% weight reduction temperatures of these complexes were above that of (ppy)2Ir(acac). All complexes exhibited intense green photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths in CH2Cl2 at room temperature were in the range 531–544 nm, which is more red‐shifted than that of (ppy)2Ir(acac). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We report a theoretical study on a series of heteroleptic cyclometalated Ir(III) complexes for OLED application. The geometries, electronic structures, and the lowest-lying singlet absorptions and triplet emissions of [(fppy)(2)Ir(III)(PPh(2)Np)] (1), and theoretically designed models [(fppy)(2)Ir(III)(PH(2)Np)] (2) and [(fppy)(2)Ir(III)Np](-)(3) were investigated with density functional theory (DFT)-based approaches, where, fppyH = 4-fluorophenyl-pyridine and NpH = naphthalene. The ground and excited states were, respectively, optimized at the M062X/LanL2DZ;6-31G* and CIS/LanL2DZ:6-31G* level of theory within CH(2)Cl(2) solution provided by PCM. The lowest absorptions and emissions were evaluated at M062X/Stuttgart;cc-pVTZ;cc-pVDZ level of theory. Though the lowest absorptions and emissions were all attributed as the ligand-based charge-transfer transition with slight metal-to-ligand charge-transfer transition character, the subtle differences in geometries and electronic structures result in the different quantum yields and versatile emission color. The newly designed molecular 3 is expected to be highly emissive in deep blue region.  相似文献   

17.
We report the synthesis, characterization, photophysical, and electrochemical properties of a series of luminescent cyclometalated iridium(III) complexes containing two aldehyde functional groups [Ir(pba)(2)(N-N)](PF(6)) (Hpba=4-(2-pyridyl)benzaldehyde; N-N=2,2'-bipyridine, bpy (1), 1,10-phenanthroline, phen (2), 3,4,7,8-tetramethyl-1,10-phenanthroline, 3,4,7,8-Me(4)-phen (3), 4,7-diphenyl-1,10-phenanthroline, 4,7-Ph(2)-phen (4)). The X-ray crystal structure of complex 1 has been investigated. Upon photoexcitation, complexes 1-4 exhibit intense and long-lived emission in fluid solutions at 298 K and in low-temperature glass. The luminescence is assigned to a triplet intra-ligand ((3)IL) excited state associated with the pba(-) ligand, probably with mixing of some triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir)-->pi*(pba(-))) character. Since each of these complexes possesses two aldehyde groups, which can react with the primary amine groups of biomolecules to form stable secondary amines after reductive amination, we have investigated the possibility of these complexes as novel luminescent cross-linkers for biological substrates. L-Alanine has been labeled with complexes 1-4 to give the luminescent bioconjugates 1-(Ala)(2)-4-(Ala)(2). These conjugates show strong photoluminescence with long emission lifetimes under ambient conditions. On the basis of the emission energy trend, the excited state of these luminescent bioconjugates is likely to bear a high parentage of (3)MLCT (dpi(Ir)-->pi*(N-N)) character. In addition, the glycoprotein avidin (Av) has also been conjugated with complexes 1-4 to give the bioconjugates 1-Av-4-Av. Upon photoexcitation, these bioconjugates also display intense and long-lived (3)MLCT (dpi(Ir)-->pi*(N-N)) emission in aqueous buffer at 298 K. Furthermore, a heterogeneous competitive assay for biotin has been developed using 2-Av and biotinylated microspheres. We have shown that complexes 1-4 represent a new class of multicolor luminescent cross-linkers for biomolecular species.  相似文献   

18.
The synthesis and photophysical characterization of a series of (N,C(2')-(2-para-tolylpyridyl))2 Ir(LL') [(tpy)2 Ir(LL')] (LL' = 2,4-pentanedionato (acac), bis(pyrazolyl)borate ligands and their analogues, diphosphine chelates and tert-butylisocyanide (CN-t-Bu)) are reported. A smaller series of [(dfppy)2 Ir(LL')] (dfppy = N,C(2')-2-(4',6'-difluorophenyl)pyridyl) complexes were also examined along with two previously reported compounds, (ppy)2 Ir(CN)2- and (ppy)2 Ir(NCS)2- (ppy = N,C(2')-2-phenylpyridyl). The (tpy)2 Ir(PPh2CH2)2 BPh2 and [(tpy)2 Ir(CN-t-Bu)2](CF3SO3) complexes have been structurally characterized by X-ray crystallography. The Ir-C(aryl) bond lengths in (tpy)2 Ir(CN-t-Bu)2+ (2.047(5) and 2.072(5) A) and (tpy)2 Ir(PPh2CH2)2 BPh2 (2.047(9) and 2.057(9) A) are longer than their counterparts in (tpy)2 Ir(acac) (1.982(6) and 1.985(7) A). Density functional theory calculations carried out on (ppy)2 Ir(CN-Me)2+ show that the highest occupied molecular orbital (HOMO) consists of a mixture of phenyl-pi and Ir-d orbitals, while the lowest unoccupied molecular orbital is localized primarily on the pyridyl-pi orbitals. Electrochemical analysis of the (tpy)2 Ir(LL') complexes shows that the reduction potentials are largely unaffected by variation in the ancillary ligand, whereas the oxidation potentials vary over a much wider range (as much as 400 mV between two different LL' ligands). Spectroscopic analysis of the cyclometalated Ir complexes reveals that the lowest energy excited state (T1) is a triplet ligand-centered state (3LC) on the cyclometalating ligand admixed with 1MLCT (MLCT = metal-to-ligand charge-transfer) character. The different ancillary ligands alter the 1MLCT state energy mainly by changing the HOMO energy. Destabilization of the 1MLCT state results in less 1MLCT character mixed into the T1 state, which in turn leads to an increase in the emission energy. The increase in emission energy leads to a linear decrease in ln(k(nr)) (k(nr) = nonradiative decay rate). Decreased 1MLCT character in the T1 state also increases the Huang-Rhys factors in the emission spectra, decreases the extinction coefficient of the T1 transition, and consequently decreases the radiative decay rates (k(r)). Overall, the luminescence quantum yields decline with increasing emission energies. A linear dependence of the radiative decay rate (k(r)) or extinction coefficient (epsilon) on (1/deltaE)2 has been demonstrated, where deltaE is the energy difference between the 1MLCT and 3LC transitions. A value of 200 cm(-1) for the spin-orbital coupling matrix element 3LC absolute value(H(SO)) 1MLCT of the (tpy)2 Ir(LL') complexes can be deduced from this linear relationship. The (fppy)2 Ir(LL') complexes with corresponding ancillary ligands display similar trends in excited-state properties.  相似文献   

19.
The photophysical properties of closely-coupled, binuclear complexes formed by connecting two ruthenium(II) tris(2,2'-bipyridine) complexes via an alkynylene group differ significantly from those of the relevant mononuclear complex. In particular, the energy of the first triplet excited state is lowered relative to the parent complex, because of the presence of the alkynylene substituent, while the triplet lifetime is prolonged, in part, because of extended electron delocalization. We now report that the triplet lifetime is also affected by the nature of the spectator 2,2'-bipyridyl ligands. Thus, replacing the parent 2,2'-bipyridine ligands with the corresponding 4,4'-dinitro-substituted ligands serves to decrease the luminescence yield and lifetime. With the corresponding carboxylate ester, the luminescence yield and lifetime are increased. Perdeuteration of the parent 2,2'-bipyridine ligands also leads to a modest increase in the luminescence yield. Such observations are indicative of electronic coupling between the various metal-to-ligand, charge-transfer excited triplet states. Temperature dependence studies confirm that these excited states are closely spaced and thermally accessible at ambient temperature. For some of the binuclear complexes, the quantum yield for formation of the lowest-energy triplet state is significantly less than unity.  相似文献   

20.
This tutorial review highlights recent and current advances in Os(II) and Ru(II) based luminescent complexes in view of their potential in providing models for photophysical properties and in serving as active materials in optoelectronic devices. It starts with a discussion of the fundamentals of pyridyl azolate chromophores and presents several prototypical designs that allow subtle variation of their basic properties. The third section of this article concerns the preparation of Os(II) and Ru(II) metal complexes and discusses the key factors that control their phosphorescence efficiencies and peak wavelengths. Attention is focused on the properties of their lowest lying excited states. In the last section, we present a series of related Os(II) complexes possessing pyridyl azolate, cyclometalated benzo[h]quinoline, beta-diketonates and quinolinates to demonstrate the power of fundamental basis to chemistry and theoretical approaches in rationalizing the corresponding photophysical behavior and hence to discuss the implications regarding their possible routes for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号