首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李文震  梁长海  辛勤 《催化学报》2004,25(10):839-843
 碳纳米管及其衍生纳米碳材料是一种介于富勒烯与石墨之间的碳的存在形式,具有独特的电子性质. 碳纳米材料可与其表面负载的金属活性相产生一种特殊的载体-金属相互作用; 纳米管中电子转移的动力学行为极佳,并且其特殊的纳米级孔道结构有利于反应物及产物的传质,因此作为低温燃料电池催化剂载体备受关注. 综述了多种新型碳纳米材料如碳纳米管、碳纳米纤维、碳纳米盘、碳纳米角和碳纳米分子筛等在低温燃料电池催化剂中的应用,并对其存在的问题和可能的发展方向进行了讨论.  相似文献   

2.
碳纳米管微结构的改变对其容量性能的影响   总被引:9,自引:0,他引:9  
以KOH为活性剂,通过在高温下将碳纳米管进行活化处理来实现对碳纳米管管壁结构的改变,得到了比表面积和孔容分别是活化处理前约3倍和1.5倍的活性碳纳米管.将活化处理前后两种碳纳米管分别制作成电化学超级电容器电极,在充满氩气的无水手套箱组装成模拟电化学超级电容器,在恒流充放电模式下进行电化学可逆容量的测试,发现活性碳纳米管的电化学容量远高于活化前碳纳米管,是它的2倍.从而发现碳纳米管被打断,管壁变粗糙的活性碳纳米管比一般碳纳米管更适合用于电化学超级电容器电极材料.  相似文献   

3.
Through the use of commercial graphite powders as the carbon sources, a variety of interesting tubular carbon nano- and microstructures, such as networked carbon nanotubes, aligned carbon microtubes with hexagonal cross-sections, aligned tapered carbon tubes, and hollow carbon microhorns, have been successfully synthesized. As-grown tubular carbon structures were characterized using scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy. An in situ template mechanism was proposed to explain the possible growth process. The vibrational properties of the synthesized tubular carbon structures were also studied by Raman spectroscopy.  相似文献   

4.
Brown carbon is a hotspot in the field of atmospheric carbonaceous aerosol research. It has significant influence on regional radiative forcing and exerts climatic effects due to its apparent absorbance in the near ultraviolet-visible region. Brown carbon is mainly derived from incomplete combustion of biomass or coal, as well as secondary sources, such as a series of atmospheric photochemical reactions from volatile organic compounds. Although the composition of brown carbon is complex, high-resolution mass spectrometry, with its ultra-high mass resolution and precision, enables elucidation of the characteristics of the organic components of brown carbon at the molecular level. Here, high-resolution mass spectrometry combined with traditional analytical methods was used for the study of brown carbon. The development of high-resolution mass spectrometry for brown carbon separation is reviewed, as well as compositional analysis, source apportionment, and formation mechanism of brown carbon based on high-resolution data. In addition, the issues and prospects for the application of high-resolution mass spectrometry to evaluate brown carbon are discussed.  相似文献   

5.
Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.  相似文献   

6.
Nickel catalysts supported on various carbon materials such as multiwall carbon nanotubes, shortened length carbon nanotubes, graphite and amorphous carbon were synthesized, characterized and tested in cyclohexene hydrogenation reaction. We have found that carbon nanotube supports are superior to graphite and amorphous carbon both in terms of catalytic activity and stability.  相似文献   

7.
陈卫 《电化学》2015,21(6):503
可以预见,在相当一段时期内,能源和环境将是全球发展的两大主题. 其实,人类对能源的获取方式将对地球的生态环境和人类未来的生存状态和生活方式产生重要影响. 正因为如此,世界各国正在大力发展可再生能源和清洁能源. 电化学能源是将化学能高效转变为电能的一种能量转换方式,它历史悠久,但不断被改进和创新,尤其是近年来得到了较快的发展. 目前,电化学能源转换和存储器件主要包括一次电池(如锌锰电池等)、二次电池(如铅酸电池、镍氢电池、锂离子电池等)、燃料电池、金属-空气电池以及超级电容器等. 电化学能源和其它可再生能源相互补充、交叉利用将是未来清洁能源的主要发展方向.  相似文献   

8.
植物基多孔炭具有发达的孔结构、大的表面积、较为成熟的制备工艺、丰富的来源、低廉的价格,是目前商业应用范围最广的超级电容器电极材料。然而在实际应用中仍然存在着质量/体积比容量较低、倍率性能差等问题。本文针对先进电容器件的高能量密度、优异功率性能的要求,首先介绍了近年来发展的植物基多孔炭的制备方法,讨论了植物前驱体的组成和结构对其产物结构的影响以及与其电化学性能之间的构效关系,特别总结了近年来植物基超大比表面积多孔炭、中孔炭、层次化多孔炭的制备方法和电容储能性能。针对大比表面积多孔炭用于超级电容器时的体积性能不佳这一关键问题,本文还总结了提高植物基多孔炭体积电化学性能的方法。最后,对植物基多孔电极材料存在的问题进行了分析与总结,并展望了其研究前景。  相似文献   

9.
Organogallium and ‐indium compounds are useful reagents in organic synthesis because of their moderate stability, efficient reactivity and high chemoselectivity. Carbogallation and ‐indation of a carbon‐carbon multiple bond achieves the simultaneous formation of carbon‐carbon and carbon‐metal bonds. Heterogallation and ‐indation construct carbon‐heteroatom and carbon‐metal bonds. Therefore, these reaction systems represent a significant synthetic method for organogalliums and ‐indiums. Many chemists have attempted to apply various types of unsaturated compounds such as alkynes, alkenes, and allenes to these reaction systems. This minireview provides an overview of carboindation and ‐gallation as well as heteroindation and ‐gallation.  相似文献   

10.
Porous carbon counter electrodes have been fabricated at low temperature by coating an organic binder free carbon slurry onto F-doped tin oxide conducting glass. The carbon slurry is prepared by ball-milling a dispersion of activated carbon in aqueous SnCl4 solution. During ball-milling, SnCl4 hydrolyzes and transforms into stannic acid gel, which acts as an inorganic “glue” to connect the carbon particles during film preparation. Dye-sensitized solar cells employing this carbon electrode achieve efficiency as high as 6.1% which is comparable to that of the cells using sputtering Pt as counter electrode.  相似文献   

11.
二氧化碳浓度持续升高导致的温室效应已在全球范围内引发极端天气、冰川融化等一系列生态环境问题。为降低二氧化碳含量,改善气候变暖带来的恶劣影响,研发高效、绿色、安全的二氧化碳处理技术,促进碳资源循环可持续发展刻不容缓。熔盐离子液体作为一种良好的电化学转化介质,为二氧化碳还原提供了一条极具应用前景的技术路线。综述了国内外近几年高温熔盐中二氧化碳的捕获与电化学还原的研究,简述了熔盐电沉积碳的电化学机理和热力学机制,对不同形貌高附加值碳材料:无定形碳、碳球和碳纳米管的制备进行了总结,最后对未来发展方向做出展望。  相似文献   

12.
吴梦昊  戴军  曾晓成 《化学进展》2012,24(6):1050-1057
由于独特的成键特性,在不同温度和压强下,碳具有丰富的结构特性。除了实验上已发现各种同素异形体,理论计算也预言了丰富的新结构。在本文中,我们对第一性原理计算预言的三维碳同素异形体做了综述,特别地,我们着重关注了泡沫状的碳结构。碳泡沫主要由石墨片断以各种碳键连接而成,具体多孔结构及较大的表面积。另外,针对由低维碳结构,如碳富勒烯、纳米芽、纳米管及石墨烯等组成的三维碳超结构以及其他三维碳晶体我们也做了概述。这些新型碳结构有的由混杂的sp-sp2碳或者纯sp2碳组成(H-6, bct-4, C-20, K4等),有的质量密度比金刚石还大(C8, hP3, tl12, tp12等),有的可以由石墨在室温高压下转化而成(M碳, bct-4碳, W碳, Z碳等)。在这些预言的碳同素异形体中,有些在将来可能在实验室合成。  相似文献   

13.
《Electroanalysis》2017,29(3):756-764
Direct electro‐oxidation of famotidine at different graphitic carbon‐based electrode materials was evaluated. These materials included conventional electrodes of edge‐plane pyrolytic graphite, basal‐plane pyrolytic graphite, carbon paste, and glassy carbon as well as nano‐structured carbon‐based materials such as pyrolytic carbon film, carbon nanotube, and nano‐graphene. Raman spectroscopy and scanning electron microscopy were employed to analyze their structural and morphological features. It was found that the pyrolytic carbon film electrode, after a simple and fast anodic activation, shows superior electroanalytical performance. The method was successfully applied for the electroanalytical determination of famotidine in tablet dosage forms and urine samples.  相似文献   

14.
碳纳米管的活化处理及对其电化学容量影响的研究   总被引:3,自引:0,他引:3  
江奇  赵勇  卢晓英  于作龙 《化学学报》2004,62(8):829-832
采用KOH为活性剂,对碳纳米管进行活化处理,经透射电子显微镜和高分辨透射电子显微镜从不同角度观察,发现得到了两端开口,管长较短,管壁粗糙的活性碳纳米管.用氮气自动吸附仪测试了活化前后两种碳纳米管的比表面积,发现活性碳纳米管具有比活化前碳纳米管更高的有效比表面积,将这两种碳纳米管分别作为电极材料应用于电化学超级电容器,经测试,发现活化后的碳纳米管的电化学容量大大提高,在有机电解液中达到了50F/g.  相似文献   

15.
The widespread concern of bovine spongiform encephalopathy (mad cow disease) has raised questions about the possibility of residual organic material in bovine-derived bone graft materials. Conflicting reports have shown both the presence and the absence of organic materials in bone derived products. This study compared residual organic levels in two commercial bone graft products: a bovine bone product treated chemically and at low temperature, and a bovine bone product treated at high temperature. In this study, organic carbon, the primary constituent of organic materials, is defined as carbon that is not liberated as CO2 upon acidification (i.e. non-carbonate carbon). Three approaches to the determination were used: (1) organic carbon was calculated as the difference between total carbon determined by high temperature combustion and carbonate carbon determined by acid evolution of CO2. (2) Organic carbon was determined by measuring total carbon by high temperature combustion of a sample that had been pretreated with acid to remove all carbonate. (3) The total organic carbon remaining in solution after acid dissolution was determined. In addition, organic nitrogen was determined as the difference between total Kjeldahl and ammonia nitrogen. Total nitrogen values were confirmed using an instrumental nitrogen analyzer. No detectable organic carbon or organic nitrogen was observed in the high temperature bone product. In the low temperature treated bovine product, however, approximately 2000 μg/g organic carbon was measured by all three methods, as well as 15 μg/g organic nitrogen.  相似文献   

16.
Enhancement of thermal properties of epoxy resins was achieved by incorporation of polybenzimidazole (PBI) fibermats filled with carbon nanomaterials, prepared by the solution electrospinning technique. Different type of carbon nanostructures (carbon nanotubes, graphite flakes, graphene nanoplatelets and carbon black) were compared as fillers in polybenzimidazole fibers. The carbon-PBI-fibermats showed remarkable thermal transport properties and therefore, they were studied as thermal reinforcement material for epoxy composites. Mechanical and thermal properties of produced composites were evaluated and the effectiveness of different types of carbon fillers examined. Results showed that the produced carbon filled fibermats can be used effectively as a thermal reinforcing material in epoxy resins, offering several advantages.  相似文献   

17.
Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.  相似文献   

18.
Shell-core nanostructured carbon materials with a nitrogen-doped graphitic layer as a shell and pristine carbon black particle as a core were synthesized by carbonizing the hybrid materials containing in situ polymerized aniline onto carbon black. In an N-doped carbon layer, the nitrogen atoms substitute carbon atoms at the edge and interior of the graphene structure to form pyridinic N and quaternary N structures, respectively. As a result, the carbon structure becomes more compact, showing curvatures and disorder in the graphene stacking. In comparison with nondoped carbon, the N-doped one was proved to be a suitable supporting material to synthesize high-loading Pt catalysts (up to 60 wt %) with a more uniform size distribution and stronger metal-support interactions due to its high electrochemically accessible surface area, richness of disorder and defects, and high electron density. Moreover, the more rapid charge-transfer rates over the N-doped carbon material are evidenced by the high crystallinity of the graphitic shell layer with nitrogen doping as well as the low charge-transfer resistance at the electrolyte/electrode interface. Beneficial roles of nitrogen doping can be found to enhance the CO tolerance of Pt catalysts. Accordingly, an improved performance in methanol oxidation was achieved on a high-loading Pt catalyst supported by N-doped carbon. The enhanced catalytic properties were extensively discussed based on mass activity (Pt utilization) and intrinsic activity (charge-transfer rate). Therefore, N-doped carbon layers present many advantages over nondoped ones and would emerge as an interesting supporting carbon material for fuel cell electrocatalysts.  相似文献   

19.
以磷钼酸作为低温下碳间接电氧化的介质构建新型碳燃料电池。通过线性电位扫描和计时电流法研究不同碳材料、不同反应条件、不同反应时间、不同磷钼酸浓度对碳间接电氧化性能的影响。采用循环伏安法研究碳在磷钼酸介质中的间接电氧化机理。研究结果表明,椰壳活性炭的间接电氧化活性要明显高于煤和煤质活性炭。以磷钼酸为介质时,采用光照与升温80oC避光的条件均可以提高碳间接电氧化性能,且提高程度接近。由循环伏安测试分析出磷钼酸中+6价Mo可将碳氧化,且被还原成+5价Mo,随后又在阳极上重新被电氧化回+6价Mo,通过该过程将从碳材料上获得的电子转移到阳极上,从而实现碳在低温条件下的间接电氧化过程。并且通过对光照条件的分析,证实光对磷钼酸催化碳电氧化反应有两方面的促进作用:一方面光的热效应使反应温度升高,从而提高反应速率;另一方面磷钼酸利用其特有结构吸收光能,提高磷钼酸与碳的反应速率,且后者促进作用更明显。以VO2+/VO2+为阴极构建的碳燃料电池全电池室温下功率是0.087m W?cm-2,验证了碳燃料电池在常温条件下运行的可行性。  相似文献   

20.
以廉价的γ-氧化铝为模板制备薄壁中孔碳材料,且可在制备过程中方便地对碳材料的孔结构、微孔率等参数进行调控.以原位聚合的酚醛树脂为碳源取代蔗糖,简化了制备流程.制得的碳材料不仅可以较好地复制氧化铝模板的孔结构,且比表面积比以蔗糖为碳源的样品显著提高.在此基础上,选用模板堆积孔径与模板自身直径差异较大的长棒状氧化铝为模板,成功地以一种模板、经过一次聚合-碳化过程制备出了具有双峰孔分布(PSD)结构的薄壁碳材料,两个峰分别位于4 nm附近的较小中孔区和13 nm附近的较大中孔区.此外,所得碳材料的比表面积(>1800 m2·g-1)和孔容(>4.5 cm3·g-1)均很高,而微孔率却较低,具有优异的中孔特性.将所得碳材料用作电化学电容器的电极,电容可达200 F·g-1,且当电流密度从0.1 A·g-1升至1.0 A·g-1时,比电容仅衰减10%,表现出良好的电容性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号