首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ultrasound-assisted crystallization process has promising potentials for improving process efficiency and modifying crystalline product properties. In this work, the crystallization process of fotagliptin benzoate methanol solvate (FBMS) was investigated to improve powder properties and downstream desolvation/drying performance. The direct cooling/antisolvent crystallization process was conducted and then optimized with the assistance of ultrasonic irradiation and seeding strategy. Direct cooling/antisolvent crystallization and seeding crystallization processes resulted in needle-like crystals which are undesirable for downstream processing. In contrast, the ultrasound-assisted crystallization process produced rod-like crystals and reduced the crystal size to facilitate the desolvation of FBMS. The metastable zone width (MSZW), induction time, crystal size, morphology, and process yield were studied comprehensively. The results showed that both the seeding and ultrasound-assisted crystallization process (without seeds) can improve the process yield and the ultrasound could effectively reduce the crystal size, narrow the MSZW, and shorten the induction time. Through comparing the drying dynamics of the FBMS, the small rod-shaped crystals with a mean size of 9.6 μm produced by ultrasonic irradiation can be completely desolvated within 20 h, while the desolvation time of long needle crystals with an average size of about 157 μm obtained by direct cooling/antisolvent crystallization and seeding crystallization processes is more than 80 h. Thus the crystal size and morphology were found to be the key factors affecting the desolvation kinetics and the smaller size produced by using ultrasound can benefit the intensification of the drying process. Overall, the ultrasound-assisted crystallization showed a full improvement including crystal properties and process efficiency during the preparation of fotagliptin benzoate desolvated crystals.  相似文献   

2.
The present study deals with the size reduction based on the recrystallization (antisolvent approach using water) of 3,3′-Diamino Diphenyl Sulfone (DADPS) using different types of cavitational reactors as an alternative to the conventional process of mechanical size reduction, which is an energy intensive approach. Ultrasound was applied for fixed time specific to the reactors namely ultrasonic probes at different power dissipation levels and also ultrasonic bath. A High Speed Homogenizer was also used at varying speeds of rotation to establishing the efficacy for size reduction. The processed sample was analysed for particle size and morphology using particle size analyser and optical microscopy respectively. The final yield of recrystallization was also determined. The power density in W/L and power intensity in W/m2 calculated for each equipment has been used to establish efficacy for size reduction since all devices had dissimilar configurations. Based on the studies of varying power intensity of the different US equipment, it was established that larger the power intensity and power density, smaller was the resultant final particle size after treatment for same time. Among the various ultrasonic devices used, Sonics VCX750 probe yielded the best size reduction of 85.47% when operated at 40% amplitude for 60 min for a volume of 200 ml. A High Speed Homogenizer used at 7000 rpm gave 92.35% of size reduction in 15 min operation and also demonstrated the best energy efficiency. The work has elucidated the comparison of different cavitational devices for size reduction for the first time and presented the best reactors and conditions for the desired size reduction.  相似文献   

3.
Micronization of poly-3-hydroxybutyrate (PHB) by the supercritical fluid antisolvent precipitation (SAS) technique using supercritical carbon dioxide as an antisolvent was studied experimentally. The possibility of preparing particles of varying morphology (including hollow spheres) and specified size from 100 nm to 20 μm was demonstrated. The influence of different mechanisms of solid phase formation during SAS micronization on the size and morphology of PHB microparticles under different experimental conditions was considered.  相似文献   

4.
The capability of arbidol microparticle preparation by supercritical antisolvent (SAS) precipitation was demonstrated. A nonmonotonic dependence of the average particle size on the concentration was found, while the position of the minimum is dependent on the type of solvent used. It is possible to prepare Arbidol particles of various morphology and size from several microns to several hundred microns depending on the conditions.  相似文献   

5.
The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10–12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.  相似文献   

6.
The primary motive of the current work is to achieve smaller mean particle size with narrow size distribution that can enhance the bioavailability of azithromycin (ARZ), an essential requirement due to its poor water solubility. Recrystallization of ARZ was evaluated using cooling as well as antisolvent crystallization approaches in the presence of ultrasonic irradiation with detailed study into effect of different parameters such as ultrasonic power, time and temperature. Ultrasound assisted antisolvent crystallization at low temperatures (<10℃) yielded best size reduction up to 80% with narrower distribution and also gave better yield of the product, that too within 5 min of sonication. With scale up considerations, recirculation mode of operation was also evaluated which offered promising results for the size reduction. Images captured using optical microscope and SEM revealed a nearly uniform rod/plate-shaped geometry. Increase in amorphous nature of ARZ was confirmed based on XRD analysis. FTIR analysis showed no significant changes in the functional groups when compared to the original sample. Overall, the work demonstrated an improved reprocessing approach based on the use of ultrasound with insights into effect of operating parameters and effect of ultrasound on various characteristics.  相似文献   

7.
Micro-sized spherical ammonium dinitramide (ADN) crystals are successfully prepared by a facile ultrasound-assisted solvent-antisolvent recrystallization method without introducing any additives. The influences of the volume ratio of solvent to antisolvent, the antisolvent temperature and the ultrasound power on the micro-morphologies and properties of ADN crystals are studied systematically. The changes of morphology, particle size, crystal structure and melting point of the ADN crystals are characterized through scanning electron microscopy (SEM), laser particle size analyzer (LPSA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The results show that the optimal experimental parameters for the ADN crystal of spherical morphology are as follows: the volume ratio of solvent to antisolvent is 1:50, the antisolvent temperature is 20 ℃, and the ultrasound power is 70 W. The predicted hexagonal-flake and spherical morphologies for the ADN are close to the experimental morphologies. The growth mechanism of the spherical ADN crystal changes with supersaturation of the ADN solution. As the degree of supersaturation increases, the growth models of the spherical ADN change from the spiral growth to the rough growth, and the morphologies of ADN change from the large-sized ADN ball to the small-sized ADN ball.  相似文献   

8.
Sonication is known to enhance crystallization of lactose from aqueous solutions. This study has attempted to reveal the mechanistic features of antisolvent crystallization of lactose monohydrate from aqueous solutions. Experiments were conducted in three protocols, viz. mechanical stirring, mechanical stirring with sonication and sonication at elevated static pressure. Mechanical stirring provided macroconvection while sonication induced microconvection in the system. Other experimental parameters were initial lactose concentration and rate of antisolvent (ethanol) addition. Kinetic parameters of crystallization were coupled with simulations of bubble dynamics. The growth rate of crystals, rate of nucleation, average size of crystal crop and total lactose yield in different protocols were related to nature of convection in the medium. Macroconvection assisted nucleation but could not give high growth rate. Microconvection comprised of microstreaming due to ultrasound and acoustic (or shock) waves due to transient cavitation. Sonication at atmospheric static pressure enhanced growth rate but reduced nucleation. However, with elimination of cavitation at elevated static pressure, sonication enhanced both nucleation and growth rate resulting in almost complete lactose recovery.  相似文献   

9.
In this work, pulsed ultrasound was used to facilitate steady-state reactive crystallization and increase the final yield and productivity of lithium carbonate in continuously operated single and multistage mixed suspension mixed product removal (MSMPR) crystallizers. Experimental analyses of the stirred tank MSMPR cascade were performed to investigate the effects of ultrasound field, residence time and temperature which contributed to the steady-state yield, crystal size distribution and crystal morphology. The results show that pulsed ultrasound can not only significantly enhance the reaction rate, but also help to improve the particle size distribution and the crystal habit. Subsequently, a population balance model was developed and applied to estimate the final yield of the continuous process of the lithium bicarbonate thermal decomposition reaction coupling lithium carbonate crystallization. The consistency of the final yield between the experiments and the simulations proved the reliability of the established model. Through the experimental and simulation analyses, it is demonstrated that the use of pulsed ultrasound, higher final stage temperature, MSMPR cascade design and appropriate residence time help to achieve higher yield and productivity. Furtherly, based on the conclusion drawn, pulsed ultrasound enhanced three-stage MSMPR cascaded lithium carbonate continuous crystallization processes were designed, and the maximum productivity of 44.0 g/h was obtained experimentally.  相似文献   

10.
The use of deep eutectic solvents (DESs) as a new extraction medium is a step towards the development of green and sustainable technology. In the present study, nine DESs based on choline chloride acids, alcohols, and sugar were screened to study the extraction of curcuminoids from Curcuma longa L. Choline chloride and lactic acid DES at 1:1 M ratio gave the maximum extent of extraction. Further, DES based extraction was intensified using ultrasound. The impact of various process parameters such as % (v/v) water in DES, % (w/v) solid loading, particle size, ultrasound power intensity, and pulse mode operation of ultrasound was studied. The maximum curcuminoids yield of 77.13 mg/g was achieved using ultrasound assisted DES (UA-DES) based extraction in 20% water content DES at 5% solid loading and 0.355 mm particle size with 70.8 W/cm2 power intensity and 60% (6 sec ON and 4 sec OFF) duty cycle at 30 ± 2 °C in 20 min of irradiation time. Kinetics of UA-DES extraction was explained using Peleg’s model and concluded that it is compatible with the experimental data. Additionally, anti-solvent (water) precipitation technique was applied, which resulted in 41.97% recovery of curcuminoids with 82.22% purity from UA-DES extract in 8 h of incubation at 0 °C. The comparison was made between conventional Soxhlet, batch, DES and UA-DES based processes on the basis of yield, time, solvent requirement, temperature, energy consumption, and process cost. The developed UA-DES based extraction can be an efficient, cost effective, and green alternative to conventional solvent extraction for curcuminoids.  相似文献   

11.
Poly(ethylene oxide) (PEO) in the semi-crystalline state shows a reversible surface crystallization and melting; a temperature decrease leads to a certain crystal thickening, a temperature increase reversely to an expansion of the amorphous intercrystallite layers. Dynamic calorimetry provides a means to investigate the kinetics of the process. The structural rearrangement in the region of the crystalline-amorphous interface can only be accomplished if the chains can slide through the crystallites. One therefore expects the associated time to change with the crystallite thickness. Variations of the crystal thickness of PEO can be achieved by choosing different crystallization temperatures. We studied the effect of the crystal thickness employing temperature-modulated differential scanning calorimetry and heat wave spectroscopy, and by carrying out small-angle X-ray scattering experiments for the structural characterization. The effect of the crystal thickness is clearly observed. Results indicate that the sliding diffusion through the crystallites takes place by helical jumps of whole stems. Data yield the activation energy per unit length of the stems. Received 20 April 2001 and Received in final form 13 August 2001  相似文献   

12.
Micronization of hydroxypropylmethylcellulose using supercritical antisolvent (SAS) method is studied. The influence of various parameters, such as solvent type, polymer concentration, pressure, solution to supercritical CO2 flow rate ratio on morphology of particles is discussed. The possibility of obtaining spherical or elliptical shape hydroxypropylmethylcellulose particles of submicron size (190–620 nm) that depends on the process parameters is demonstrated.  相似文献   

13.
In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.  相似文献   

14.
Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency.  相似文献   

15.
In the present work, natural clinoptilolite was converted to zeolite NaP using ultrasonic energy, in which the transformation time shortened remarkably. The effect of post-synthesis treatment using conventional hydrothermal was also investigated. The synthesized powders were characterized by XRD, TGA/DTA, SEM, and PSD analysis. The results showed that, increasing the sonication time (energy) has no significant effect on the product’s morphology. The crystallinity of the synthesized samples increased slightly with increasing sonication time, but their yield remained relatively unchanged. Furthermore, post-synthesis hydrothermal treatment showed very little influence on properties of the final product. Because the ultrasonic irradiation creates acoustic cavitation cracks on the surface structure of clinoptilolite particulates and increases the concentration of soluble alumino-silicate species, which favors the prevailing super-saturation, crystallization and crystal growth of zeolite NaP happen faster. The particles of zeolite NaP synthesized by ultrasonic irradiation consist of small crystallites of uniform size.  相似文献   

16.
The process of micronization of levofloxacin (LF, an antibacterial agent of the fluoroquinolone group) by the supercritical antisolvent precipitation technique (SAS) was investigated. It was shown that LF particles of different sizes (from 1 to 10 μm) and of various morphologies (from thin plates to elongated parallelepipeds) can be produced depending on the type of solvent used for conducting micronization. Investigation of the micronized LF preparations using the methods of IR-Fourier spectroscopy, Raman scattering, and circular dichroism showed that the LF micronization caused neither changes in its chemical structure nor racemization. Micronization of LF significantly affects the rate of its dissolution in model systems exhibiting effects dependent on the type of the solvent used for micronization. For example, the highest rate of dissolution at pH 4 was observed for LF preparations micronized with the help of chlorohydrocarbons. It was shown that the rate of dissolution of all micronized LF preparations was higher by 15–30% in comparison with the initial LF, which likely was related to the changes in the degree of crystallinity/amorphousness, as well as of morphologies of microparticles formed in the SAS process.  相似文献   

17.
With the increasing demand for biopharmaceuticals, a method to crystallize biomolecule products with high quality, high yield and uniform size distribution as well as regular crystal habit is needed. In this work, ultrasound was used as a nucleation accelerator to decrease the energy barrier for lysozyme crystal formation. Crystallization experiments on egg-white lysozyme were carried out with and without ultrasound. The effect of ultrasound on induction time, metastable zone width, crystal size and morphology and process yield was investigated in detail. The nucleation-promoting effect produced by ultrasound is illustrated by the reduction of metastable zone width and induction time. By inducing faster nucleation, ultrasound leads to protein crystals grow at lower supersaturation levels with shorter induction time. It was found that ultrasound could result in uniform size distribution of the product due to the preventing of aggregation. However, long time continuous application of ultrasound could result in smaller particle size. Hence, ultrasonic-stop method was found to be a more appropriate strategy to enhance the crystallization process of proteins such as lysozyme.  相似文献   

18.
Supercritical antisolvent (SAS) precipitation is employed for micronization of moxifloxacin (MF), an antibiotic from the fluoroquinolone group, to develop new dosage forms of MF. With this technique, we produced, in a controllable fashion, MF particles with different sizes (0.6–8.0 μm) and morphologies (from polygonal sheets to elongated rectangular prisms). The infrared and circular dichroism spectroscopy data suggest that micronization of MF via SAS does not alter its chemical structure or cause racemization. We demonstrate that micronized forms of MF drug substance exhibit a 20 to 30% increase in the dissolution rate, as compared to the initial MF form, in a physiological medium (pH 7.4). The dissolution rate of the microparticles obtained via SAS micronization depends on their size, morphology, and degree of crystallinity. The various data obtained in this study will be used in formulating new dosage forms of MF for treatment of drug-resistant forms of tuberculoses.  相似文献   

19.
The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30 min. The optimum operating conditions were found to be: extraction temperature, 51.5 °C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters.  相似文献   

20.
The evolution of grain structures in materials is a complex and multiscale process that determines the material's final properties [1]. Understanding the dynamics of grain growth is a key factor for controlling this process. We propose a phenomenological approach, based on a nonlinear, discrete mass transfer equation for the evolution of an arbitrary initial grain size distribution. Transition rates for mass transfer across grains are assumed to follow the Arrhenius law, but the activation energy depends on the degree of amorphization of each grain. We argue that the magnitude of the activation energy controls the final (sintered) grain size distribution, and we verify this prediction by numerical simulation of mass transfer in a one-dimensional grain aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号