首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱平 《东北数学》2005,21(3):336-344
In this paper, we consider the Straight Line Type Node Configuration C (SLTNCC) in multivariate polynomial interpolation as the result of different kinds of transformations of lines (such as parallel translations, rotations). Corresponding to these transformations we define different kinds of interpolation problems for the SLTNCC. The expression of the confluent multivariate Vandermonde determinant of the coefficient matrix for each of these interpolation problems is obtained, and from this expression we conclude the related interpolation problem is unisolvent. Also, we give a kind of generalization of the SLTNCC in Section 5. As well, we obtain an expression of the interpolating polynomial for a kind of interpolation problem discussed in this paper.  相似文献   

2.
本文研究等距结点上双周期整(0,Δmh )插值问题,得到它在 B2σ中有唯一解的充要条件,给出了这种插值函数的精确表达式,同时也考虑了该插值算子的收敛性  相似文献   

3.
One of the problems in bivariate polynomial interpolation is the choice of a space of polynomials suitable for interpolating a given set of data. Depending on the number of data, a usual space is that of polynomials in 2 variables of total degree not greater than k. However, these spaces are not enough to cover many interpolation problems. Here, we are interested in spaces of polynomials of total degree not greater than k whose degree diminishes along some prescribed directions. These spaces arise naturally in some interpolation problems and we describe them in terms of polynomials satisfying some asymptotic interpolation conditions. This provides a general frame to the interpolation problems studied in some of our recent papers.  相似文献   

4.
We investigate interpolation and approximation problems by splines, which possess a countable set of knots on the positive axis. In particular, we characterize those sets of points, which admit unique Lagrange interpolation and give some sufficient and some necessary conditions for best approximations. Moreover, we show that the classical results of spline-approximation theory are not available for splines with a countable set of knots.  相似文献   

5.
We introduce and discuss a new computational model for the Hermite-Lagrange interpolation with nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known Hermite-Lagrange interpolation problems and algorithms. Like in traditional Hermite-Lagrange interpolation, our model is based on the execution of arithmetic operations (including divisions) in the field where the data (nodes and values) are interpreted and arithmetic operations are counted at unit cost. This leads us to a new view of rational functions and maps defined on arbitrary constructible subsets of complex affine spaces. For this purpose we have to develop new tools in algebraic geometry which themselves are mainly based on Zariski’s Main Theorem and the theory of places (or equivalently: valuations). We finish this paper by exhibiting two examples of Lagrange interpolation problems with nonlinear classes of interpolants, which do not admit efficient interpolation algorithms (one of these interpolation problems requires even an exponential quantity of arithmetic operations in terms of the number of the given nodes in order to represent some of the interpolants).In other words, classic Lagrange interpolation algorithms are asymptotically optimal for the solution of these selected interpolation problems and nothing is gained by allowing interpolation algorithms and classes of interpolants to be nonlinear. We show also that classic Lagrange interpolation algorithms are almost optimal for generic nodes and values. This generic data cannot be substantially compressed by using nonlinear techniques.We finish this paper highlighting the close connection of our complexity results in Hermite-Lagrange interpolation with a modern trend in software engineering: architecture tradeoff analysis methods (ATAM).  相似文献   

6.
In the present paper, we study model singularly perturbed convection-diffusion problems with exponential boundary layers. It has been believed for some time that only a complete splitting of the exact solution into regular and layer parts provides the information necessary for the study of the uniform convergence properties of numerical methods for these problems on layer-adapted grids (such as Shishkin meshes). In the present paper, we give new proofs of uniform interpolation error estimates for linear and bilinear interpolation; these proofs are based on the older a priori bounds derived by Kellogg and Tsan [1].  相似文献   

7.
We obtain the Laurent polynomial of Hermite interpolation on the unit circle for nodal systems more general than those formed by the n-roots of complex numbers with modulus one. Under suitable assumptions for the nodal system, that is, when it is constituted by the zeros of para-orthogonal polynomials with respect to appropriate measures or when it satisfies certain properties, we prove the convergence of the polynomial of Hermite-Fejér interpolation for continuous functions. Moreover, we also study the general Hermite interpolation problem on the unit circle and we obtain a sufficient condition on the interpolation conditions for the derivatives, in order to have uniform convergence for continuous functions.Finally, we obtain some improvements on the Hermite interpolation problems on the interval and for the Hermite trigonometric interpolation.  相似文献   

8.
插值算子逼近是逼近论中一个非常有趣的问题,尤其是以一些特殊的点为结点的插值算子的逼近问题很受人们的关注.研究了以第一类Chebyshev多项式零点为插值结点的Hermite插值算子在Orlicz范数下的逼近.  相似文献   

9.
In the present paper, we describe an adaptive modified rational global Lanczos algorithm for model‐order reduction problems using multipoint moment matching‐based methods. The major problem of these methods is the selection of some interpolation points. We first propose a modified rational global Lanczos process and then we derive Lanczos‐like equations for the global case. Next, we propose adaptive techniques for choosing the interpolation points. Second‐order dynamical systems are also considered in this paper, and the adaptive modified rational global Lanczos algorithm is applied to an equivalent state space model. Finally, some numerical examples will be given.  相似文献   

10.
In this short work we study the existence and uniqueness of solution for some Birkhoff interpolation problems with lacunary polynomials. First we solve the one-node problem; next we solve the two-node problem in the restricted case where one of the nodes is null.  相似文献   

11.
In this study, we develop an approximate formulation for two‐dimensional nonlinear Sobolev problems by focusing on pseudospectral meshless radial point interpolation (PSMRPI) which is a kind of locally applied radial basis function interpolation and truthfully a meshless approach. In the PSMRPI method, the nodal points do not need to be regularly distributed and can even be quite arbitrary. It is easy to have high order derivatives of unknowns in terms of the values at nodal points by constructing operational matrices. The convergence and stability of the technique in some sense are studied via some examples to show the validity and trustworthiness of the PSMRPI technique.  相似文献   

12.
On the trigonometric interpolation and the entire interpolation   总被引:17,自引:0,他引:17  
In this paper, we study a kind of interpolation problems on a given nodal set by trigonometric polynomials of order n and entire functions of exponential type according as the nodal set is respectively. We established some equivalent conditions and found the explicit forms of some interpolation functions on the interpolation problems. As a special case, the explicit forms of fundamential functions of (0,m)-interpolat on by trigonometric case or entire functions case (in B2 σ) respectively, if they exist, may follow from our results. Besides, we also considered the convergence of the interpolation functions at above stated. Suported by the Natural Youth Science Foundation of Beijing Normal University.  相似文献   

13.
In this paper, we suggest a new vertex interpolation algorithm to improve an existing cell-centered finite volume scheme for nonlinear diffusion problems on general meshes. The new vertex interpolation algorithm is derived by applying a special limit procedure to the well-known MPFA-O method. Since the MPFA-O method for 3D cases has been addressed in some studies, the new vertex interpolation algorithm can be extended to 3D cases naturally. More interesting is that the solvability of the corresponding local system is proved under some assumptions. Additionally, we modify the edge flux approximation by an edge-based discretization of diffusion coefficient, and thus the improved scheme is free of the so-called numerical heat-barrier issue suffered by many existing cell-centered or hybrid schemes. The final scheme allows arbitrary continuous or discontinuous diffusion coefficients and can be applicable to arbitrary star-shaped polygonal meshes. A second-order convergence rate for the approximate solution and a first-order accuracy for the flux are observed in numerical experiments. In the comparative experiments with some existing vertex interpolation algorithms, the new algorithm shows obvious improvement on highly distorted meshes.  相似文献   

14.
The Simplex Stochastic Collocation (SSC) method is an efficient algorithm for uncertainty quantification (UQ) in computational problems with random inputs. In this work, we show how its formulation based on simplex tessellation, high degree polynomial interpolation and adaptive refinements can be employed in problems involving optimization under uncertainty. The optimization approach used is the Nelder-Mead algorithm (NM), also known as Downhill Simplex Method. The resulting SSC/NM method, called Simplex2, is based on (i) a coupled stopping criterion and (ii) the use of an high-degree polynomial interpolation in the optimization space for accelerating some NM operators. Numerical results show that this method is very efficient for mono-objective optimization and minimizes the global number of deterministic evaluations to determine a robust design. This method is applied to some analytical test cases and a realistic problem of robust optimization of a multi-component airfoil.  相似文献   

15.
本文讨论样条空间S13(△_(1)~mn)上的插值问题,导出了一类插值条件下样条插值的存在性与唯一性结论以及计算插值样条的递推格式.其主要结论是对四阶光滑的函数,插值排条可达2阶(相对网格长度)逼近度.  相似文献   

16.
We present a method for computing the Hermite interpolation polynomial based on equally spaced nodes on the unit circle with an arbitrary number of derivatives in the case of algebraic and Laurent polynomials. It is an adaptation of the method of the Fast Fourier Transform (FFT) for this type of problems with the following characteristics: easy computation, small number of operations and easy implementation.In the second part of the paper we adapt the algorithm for computing the Hermite interpolation polynomial based on the nodes of the Tchebycheff polynomials and we also study Hermite trigonometric interpolation problems.  相似文献   

17.
We use operator identities in order to solve linear homogeneous matrix difference and differential equations and we obtain several explicit formulas for the exponential and for the powers of a matrix as an example of our methods. Using divided differences we find solutions of some scalar initial value problems and we show how the solution of matrix equations is related to polynomial interpolation.  相似文献   

18.
The purpose of this paper is to present some aspects of multivariate Hermite polynomial interpolation. We do not focus on algebraic considerations, combinatoric and geometric aspects, but on explicitation of formulas for uniform and non-uniform bivariate interpolation and some higher dimensional problems. The concepts of similar and equivalent interpolation schemes are introduced and some differential aspects related to them are also investigated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Padé approximants are a frequently used tool for the solution of mathematical problems. One of the main drawbacks of their use for multivariate functions is the calculation of the derivatives off(x 1, ...,x p ). Therefore multivariate Newton-Padé approximants are introduced; their computation will only use the value off at some points. In Sect. 1 we shall repeat the univariate Newton-Padé approximation problem which is a rational Hermite interpolation problem. In Sect. 2 we sketch some problems that can arise when dealing with multivariate interpolation. In Sect. 3 we define multivariate divided differences and prove some lemmas that will be useful tools for the introduction of multivariate Newton-Padé approximants in Sect. 4. A numerical example is given in Sect. 5, together with the proof that forp=1 the classical Newton-Padé approximants for a univariate function are obtained.  相似文献   

20.
We study some problems related to the effect of bounded, additive sample noise in the bandlimited interpolation given by the Whittaker-Shannon-Kotelnikov (WSK) sampling formula. We establish a generalized form of the WSK series that allows us to consider the bandlimited interpolation of any bounded sequence at the zeros of a sine-type function. The main result of the paper is that if the samples in this series consist of independent, uniformly distributed random variables, then the resulting bandlimited interpolation almost surely has a bounded global average. In this context, we also explore the related notion of a bandlimited function with bounded mean oscillation. We prove some properties of such functions, and in particular, we show that they are either bounded or have unbounded samples at any positive sampling rate. We also discuss a few concrete examples of functions that demonstrate these properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号