首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition that eliminates the need for using the Benders or Dantzig-Wolfe master problem. It is a generalization of the Brown-Robinson method for a finite matrix game and can also be considered as a generalization of the Kornai-Liptak method. It is based on the subproblem phase in cross decomposition, where we iterate between the dual subproblem and the primal subproblem. As input to the dual subproblem we use the average of a part of all dual solutions of the primal subproblem, and as input to the primal subproblem we use the average of a part of all primal solutions of the dual subproblem. In this paper we give a new proof of convergence for this procedure. Previously convergence has only been shown for the application to a special separable case (which covers the Kornai-Liptak method), by showing equivalence to the Brown-Robinson method.  相似文献   

2.
《Optimization》2012,61(5-6):495-516
For optimization problems that are structured both with respect to the constraints and with respect to the variables, it is possible to use primal–dual solution approaches, based on decomposition principles. One can construct a primal subproblem, by fixing some variables, and a dual subproblem, by relaxing some constraints and king their Lagrange multipliers, so that both these problems are much easier to solve than the original problem. We study methods based on these subproblems, that do not include the difficult Benders or Dantzig-Wolfe master problems, namely primal–dual subgradient optimization methods, mean value cross decomposition, and several comtbinations of the different techniques. In this paper, these solution approaches are applied to the well-known uncapacitated facility location problem. Computational tests show that some combination methods yield near-optimal solutions quicker than the classical dual ascent method of Erlenkotter  相似文献   

3.
We deal with the linear programming problem in which input data can vary in some given real compact intervals. The aim is to compute the exact range of the optimal value function. We present a general approach to the situation the feasible set is described by an arbitrary linear interval system. Moreover, certain dependencies between the constraint matrix coefficients can be involved. As long as we are able to characterize the primal and dual solution set (the set of all possible primal and dual feasible solutions, respectively), the bounds of the objective function result from two nonlinear programming problems. We demonstrate our approach on various cases of the interval linear programming problem (with and without dependencies).  相似文献   

4.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

5.
We propose two new Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity constraints. We compare the strength of the proposed dual bounds and demonstrate that they are superior to the bound obtained from the continuous relaxation of a standard mixed-integer programming (MIP) formulation. For a given dual solution, the associated Lagrangian relaxation bounds can be calculated by solving a set of single scenario subproblems and then solving a single knapsack problem. We also derive two new primal MIP formulations and demonstrate that for chance-constrained linear programs, the continuous relaxations of these formulations yield bounds equal to the proposed dual bounds. We propose a new heuristic method and two new exact algorithms based on these duals and formulations. The first exact algorithm applies to chance-constrained binary programs, and uses either of the proposed dual bounds in concert with cuts that eliminate solutions found by the subproblems. The second exact method is a branch-and-cut algorithm for solving either of the primal formulations. Our computational results indicate that the proposed dual bounds and heuristic solutions can be obtained efficiently, and the gaps between the best dual bounds and the heuristic solutions are small.  相似文献   

6.
A new Lagrangean approach to the pooling problem   总被引:1,自引:0,他引:1  
We present a new Lagrangean approach for the pooling problem. The relaxation targets all nonlinear constraints, and results in a Lagrangean subproblem with a nonlinear objective function and linear constraints, that is reformulated as a linear mixed integer program. Besides being used to generate lower bounds, the subproblem solutions are exploited within Lagrangean heuristics to find feasible solutions. Valid cuts, derived from bilinear terms, are added to the subproblem to strengthen the Lagrangean bound and improve the quality of feasible solutions. The procedure is tested on a benchmark set of fifteen problems from the literature. The proposed bounds are found to outperform or equal earlier bounds from the literature on 14 out of 15 tested problems. Similarly, the Lagrangean heuristics outperform the VNS and MALT heuristics on 4 instances. Furthermore, the Lagrangean lower bound is equal to the global optimum for nine problems, and on average is 2.1% from the optimum. The Lagrangean heuristics, on the other hand, find the global solution for ten problems and on average are 0.043% from the optimum.  相似文献   

7.
The problem of finding the projections of points on the sets of solutions of primal and dual problems of linear programming is considered. This problem is reduced to a single solution of the problem of minimizing a new auxiliary function, starting from some threshold value of the penalty coefficient. Estimates of the threshold value are obtained. A software implementation of the proposed method is compared with some known commercial and research software packages for solving linear programming problems.  相似文献   

8.
《Optimization》2012,61(5):627-641
We study lower bounding methods for indefinite integer quadratic programming problems. We first construct convex relaxations by D.C. (difference of convex functions) decomposition and linear underestimation. Lagrangian bounds are then derived by applying dual decomposition schemes to separable relaxations. Relationships between the convex relaxation and Lagrangian dual are established. Finally, we prove that the lower bound provided by the convex relaxation coincides with the Lagrangian bound of the orthogonally transformed problem.  相似文献   

9.
In exact arithmetic, the simplex method applied to a particular linear programming problem instance with real data either shows that it is infeasible, shows that its dual is infeasible, or generates optimal solutions to both problems. Most interior-point methods, on the other hand, do not provide such clear-cut information. If the primal and dual problems have bounded nonempty sets of optimal solutions, they usually generate a sequence of primal or primaldual iterates that approach feasibility and optimality. But if the primal or dual instance is infeasible, most methods give less precise diagnostics. There are methods with finite convergence to an exact solution even with real data. Unfortunately, bounds on the required number of iterations for such methods applied to instances with real data are very hard to calculate and often quite large. Our concern is with obtaining information from inexact solutions after a moderate number of iterations. We provide general tools (extensions of the Farkas lemma) for concluding that a problem or its dual is likely (in a certain well-defined sense) to be infeasible, and apply them to develop stopping rules for a homogeneous self-dual algorithm and for a generic infeasible-interior-point method for linear programming. These rules allow precise conclusions to be drawn about the linear programming problem and its dual: either near-optimal solutions are produced, or we obtain certificates that all optimal solutions, or all feasible solutions to the primal or dual, must have large norm. Our rules thus allow more definitive interpretation of the output of such an algorithm than previous termination criteria. We give bounds on the number of iterations required before these rules apply. Our tools may also be useful for other iterative methods for linear programming. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

10.
We investigate a logistics facility location problem to determine whether the existing facilities remain open or not, what the expansion size of the open facilities should be and which potential facilities should be selected. The problem is formulated as a mixed integer linear programming model (MILP) with the objective to minimize the sum of the savings from closing the existing facilities, the expansion costs, the fixed setup costs, the facility operating costs and the transportation costs. The structure of the model motivates us to solve the problem using Benders decomposition algorithm. Three groups of valid inequalities are derived to improve the lower bounds obtained by the Benders master problem. By separating the primal Benders subproblem, different types of disaggregated cuts of the primal Benders cut are constructed in each iteration. A high density Pareto cut generation method is proposed to accelerate the convergence by lifting Pareto-optimal cuts. Computational experiments show that the combination of all the valid inequalities can improve the lower bounds significantly. By alternately applying the high density Pareto cut generation method based on the best disaggregated cuts, the improved Benders decomposition algorithm is advantageous in decreasing the total number of iterations and CPU time when compared to the standard Benders algorithm and optimization solver CPLEX, especially for large-scale instances.  相似文献   

11.
We propose a new class of incremental primal–dual techniques for solving nonlinear programming problems with special structure. Specifically, the objective functions of the problems are sums of independent nonconvex continuously differentiable terms minimized subject to a set of nonlinear constraints for each term. The technique performs successive primal–dual increments for each decomposition term of the objective function. The primal–dual increments are calculated by performing one Newton step towards the solution of the Karush–Kuhn–Tucker optimality conditions of each subproblem associated with each objective function term. We show that the resulting incremental algorithm is q-linearly convergent under mild assumptions for the original problem.  相似文献   

12.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

13.
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we consider the formulation of subproblems in which the objective function is a generalization of the Hestenes-Powell augmented Lagrangian function. The main feature of the generalized function is that it is minimized with respect to both the primal and the dual variables simultaneously. The benefits of this approach include: (i) the ability to control the quality of the dual variables during the solution of the subproblem; (ii) the availability of improved dual estimates on early termination of the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit bounds on the dual variables. We propose two primal-dual variants of conventional primal methods: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual 1 linearly constrained Lagrangian (pd 1LCL) method. Finally, a new sequential quadratic programming (pdSQP) method is proposed that uses the primal-dual augmented Lagrangian as a merit function.  相似文献   

14.
We apply a recent extension of the Bregman proximal method for convex programming to LP relaxations of 0–1 problems. We allow inexact subproblem solutions obtained via dual ascent, increasing their accuracy successively to retain global convergence. Our framework is applied to relaxations of large-scale set covering problems that arise in airline crew scheduling. Approximate relaxed solutions are used to construct primal feasible solutions via a randomized heuristic. Encouraging preliminary experience is reported.  相似文献   

15.
This paper presents a new algorithm for the solution of a network problem with equal flow side constraints. The solution technique is motivated by the desire to exploit the special structure of the side constraints and to maintain as much of the characteristics of pure network problems as possible. The proposed algorithm makes use of Lagrangean relaxation to obtain a lower bound and decomposition by right-hand-side allocation to obtain upper bounds. The lagrangean dual serves not only to provide a lower bound used to assist in termination criteria for the upper bound, but also allows an initial allocation of equal flows for the upper bound. The algorithm has been tested on problems with up to 1500 nodes and 6000 arcs. Computational experience indicates that solutions whose objective function value is well within 1% of the optimum can be obtained in 1%–65% of the MPSX time depending on the amount of imbalance inherent in the problem. Incumbent integer solutions which are within 99.99% feasible and well within 1% of the proven lower bound are obtained in a straightforward manner requiring, on the average, 30% of the MPSX time required to obtain a linear optimum.  相似文献   

16.
On the convergence of cross decomposition   总被引:2,自引:0,他引:2  
Cross decomposition is a recent method for mixed integer programming problems, exploiting simultaneously both the primal and the dual structure of the problem, thus combining the advantages of Dantzig—Wolfe decomposition and Benders decomposition. Finite convergence of the algorithm equipped with some simple convergence tests has been proved. Stronger convergence tests have been proposed, but not shown to yield finite convergence.In this paper cross decomposition is generalized and applied to linear programming problems, mixed integer programming problems and nonlinear programming problems (with and without linear parts). Using the stronger convergence tests finite exact convergence is shown in the first cases. Unbounded cases are discussed and also included in the convergence tests. The behaviour of the algorithm when parts of the constraint matrix are zero is also discussed. The cross decomposition procedure is generalized (by using generalized Benders decomposition) in order to enable the solution of nonlinear programming problems.  相似文献   

17.
Many branch and bound procedures for integer programming employ linear programming to obtain bound information. Nodes in the tree structure are defined by explicitly changing bounds on certain variables and/or adding one or more constraints to the parent LP; thus, primal feasibility is destroyed. The design and analysis of the resulting tree structure requires that basis information be stored for each node and that feasibility restoring pivots be used to obtain the node bound. In turn, this may require the introduction of artificial variables and/or dual simplex pivots.This paper describes a simple procedure for branch and bound that does not destroy primal feasibility. Moreover, the information required to be stored to define the node problems is minimal.  相似文献   

18.
《Optimization》2012,61(8):1247-1258
In this article, the standard primal and dual linear semi-infinite programming (DLSIP) problems are reformulated as linear programming (LP) problems over cones. Therefore, the dual formulation via the minimal cone approach, which results in zero duality gap for the primal–dual pair for LP problems over cones, can be applied to linear semi-infinite programming (LSIP) problems. Results on the geometry of the set of the feasible solutions for the primal LSIP problem and the optimality criteria for the DLSIP problem are also discussed.  相似文献   

19.
This paper presents a variant of Karmarkar's linear programming algorithm that works directly with problems expressed in standard form and requires no a priori knowledge of the optimal objective function value. Rather, it uses a variation on Todd and Burrell's approach to compute ever better bounds on the optimal value, and it can be run as a prima-dual algorithm that produces sequences of primal and dual feasible solutions whose objective function values convege to this value. The only restrictive assumption is that the feasible region is bounded with a nonempty interior; compactness of the feasible region can be relaxed to compactness of the (nonempty) set of optimal solutions.  相似文献   

20.
We develop and investigate the performance of a hybrid solution framework for solving mixed-integer linear programming problems. Benders decomposition and a genetic algorithm are combined to develop a framework to compute feasible solutions. We decompose the problem into a master problem and a subproblem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master problem, whereas the subproblem is solved to optimality using a linear programming solver. Over successive iterations the master problem is refined by adding cutting planes that are implied by the subproblem. We compare the performance of the approach against a standard Benders decomposition approach as well as against a stand-alone solver (Cplex) on MIPLIB test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号