首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors developed a rigorous framework to model nanofiltration (NF) membrane selectivity at high feed water recoveries and verify it experimentally. The phenomenological model and the Donnan steric partitioning pore model (DSPM) were incorporated into a differential element approach for predicting removal of a variety of solutes from single salt solutions and natural water by NF membranes up to 90% feed water recovery in the temperature range 5-41 degrees C. In this approach, the entire membrane ensemble was divided into numerous sub-elements analogous to real-world full-scale NF installations, where concentrate (or reject) from one element feeds into the next element. Fundamental membrane properties (average pore radius, surface charge density, and ratio of thickness to porosity) and the reflection coefficient and permeability coefficient were first independently obtained for each solute-membrane-temperature combination using separate low recovery experiments with negligible concentration polarization and later used as model inputs to calculate solute removal in a purely predictive fashion for 5-90% recovery. This modeling approach accurately predicted removals from single salt solutions of NaCl and MgSO(4) as well as natural organic matter, disinfection by-product precursors, and several ions from pretreated Lake Houston water in a wide range of operating conditions demonstrating its use to simulate NF permeate water quality under real-world conditions of high feed water recovery.  相似文献   

2.
In this paper we have studied water transport in membrane distillation using a flat PTFE membrane. Experiments have been carried out with water and aqueous solutions of NaCl as feed. The effects of temperature and concentration polarization on the reduction of vapour pressure differences across the membrane with regard to the vapour pressure differences corresponding to the bulk phases which are separated by the membrane, are evaluated. A coefficient which measures this reduction has been introduced. This coefficient and the temperature polarization coefficient coincide when water is used as feed, but they are more and more different when the salt concentration of feed increases.The measured flux results and the calculated polarization results are discussed for different temperatures, recirculation rates and solution concentrations.  相似文献   

3.
New membrane distillation configurations and a new membrane module were investigated to improve water desalination. The performances of three hydrophobic microporous membranes were evaluated under vacuum enhanced direct contact membrane distillation (DCMD) with a turbulent flow regime and with a feed water temperature of only 40 °C. The new configurations provide reduced temperature polarization effects due to better mixing and increased mass transport of water due to higher permeability through the membrane and due to a total pressure gradient across the membrane. Comparison with previously reported results in the literature reveals that mass transport of water vapors is substantially improved with the new approach. The performance of the new configuration was investigated with both NaCl and synthetic sea salt feed solutions. Salt rejection was greater than 99.9% in almost all cases. Salt concentrations in the feed stream had only a minor effect on water flux. The economic aspects of the enhanced DCMD process are briefly discussed and comparisons are made with the reverse osmosis (RO) process for desalination.  相似文献   

4.
Pressure retarded osmosis (PRO) was investigated as a viable source of renewable energy. In PRO, water from a low salinity feed solution permeates through a membrane into a pressurized, high salinity draw solution; power is obtained by depressurizing the permeate through a hydroturbine. A PRO model was developed to predict water flux and power density under specific experimental conditions. The model relies on experimental determination of the membrane water permeability coefficient (A), the membrane salt permeability coefficient (B), and the solute resistivity (K). A and B were determined under reverse osmosis conditions, while K was determined under forward osmosis (FO) conditions. The model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate (CTA) FO membrane and NaCl feed and draw solutions closely matched model predictions. Maximum power densities of 2.7 and 5.1 W/m2 were observed for 35 and 60 g/L NaCl draw solutions, respectively, at 970 kPa of hydraulic pressure. Power density was substantially reduced due to internal concentration polarization in the asymmetric CTA membranes and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.  相似文献   

5.
The influence of temperature and concentration on nanofilter charge density and electrolyte pore transport mechanisms is reported. Crossflow filtration experiments were performed to measure transport of several electrolytes (NaCl, NaNO3, NaClO4, CaCl2, MgCl2, and MgSO4) across two commercially available thin-film composite nanofiltration membranes in the range 5-41 degrees C. Experiments were also performed with selected salts in the range 1-50 meq/L to quantify concentration effects. Three different approaches, irreversible thermodynamics, extended Nernst-Planck formulation, and theory of rate processes, were employed to interpret retentions of these symmetric and asymmetric electrolytes at varying temperature and concentration. Increasing feed water temperature slightly increased electrolyte reflection coefficients and only weakly increased permeability compared with neutral solutes. Electromigration and convection tended to counteract each other at high fluxes explaining the weak temperature dependence of the reflection coefficient. Changes in membrane surface charge density with temperature were attributed to increased adsorption of electrolytes on the polymer constituting the active layer. Activation energy of permeation for charged solutes was primarily determined by the Donnan potential at the membrane-feed water interface. Electrolyte permeation was shown to be an enthalpy-driven process that resulted in small entropy changes. Increasing sorption capacity with temperature and low sorption energies indicated that co-ion sorption on polymeric membranes was an endothermic physicosorption process, which appears to determine temperature dependence of electrolyte permeation at increased feed concentrations.  相似文献   

6.
Cholesterol plays an important role in maintaining the correct fluidity and rigidity of the plasma membrane of all animal cells, and hence, it is present in concentrations ranging from 20 to 50 mol %. Whereas the effect of cholesterol on such mechanical properties has been studied exhaustively over the last decades, the structural basis for cholesterol effects on membrane permeability is still unclear. Here we apply systematic molecular dynamics simulations to study the partitioning of solutes between water and membranes. We derive potentials of mean force for six different solutes permeating across 20 different lipid membranes containing one out of four types of phospholipids plus a cholesterol content varying from 0 to 50 mol %. Surprisingly, cholesterol decreases solute partitioning into the lipid tail region of the membranes much more strongly than expected from experiments on macroscopic membranes, suggesting that a laterally inhomogeneous cholesterol concentration and permeability may be required to explain experimental findings. The simulations indicate that the cost of breaking van der Waals interactions between the lipid tails of cholesterol-containing membranes account for the reduced partitioning rather than the surface area per phospholipid, which has been frequently suggested as a determinant for solute partitioning. The simulations further show that the partitioning is more sensitive to cholesterol (i) for larger solutes, (ii) in membranes with saturated as compared to membranes with unsaturated lipid tails, and (iii) in membranes with smaller lipid head groups.  相似文献   

7.
This study deals with the separation of n-butanol from aqueous solutions by pervaporation. The effects of feed concentration, temperature, and membrane thickness on the separation performance were investigated. Over the low feed butanol concentration range (0.03–0.4 wt%) studied, the butanol flux was shown to increase proportionally with an increase in the feed butanol concentration, whereas the water flux was relatively constant. An increase in temperature increased both the butanol and water fluxes, and the increase in butanol flux was more pronounced than water flux, resulting in an increase in separation factor. While the permeation flux could be enhanced by reducing the membrane thickness as expected for all rate-controlled processes, the separation factor was compromised when the membrane became thinner. The effect of membrane thickness on the separation performance was analyzed taking into account the boundary layer effect. This could not be fully attributed to the concentration polarization, which was found not significant enough to dominate the mass transport. A variation in the membrane thickness would vary the local concentration of permeant inside the membrane, thereby affecting the permeation of butanol and water differently. Thus, caution should be exercised in using permeation flux normalized by a given thickness to predict the separation performance of a membrane with a different thickness because the membrane selectivity can be affected by the membrane thickness even in the absence of boundary layer effect.  相似文献   

8.
Quantitative analysis of various resistances that lead to flux decline during cross-flow ultrafiltration (UF) of the fermentation broth of Bacillus subtilis ATCC (American Type Culture Collection) 21332 culture was studied. Polyethersulfone membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. Prior to cross-flow UF, the broth was treated by acid precipitation (pH 4.0) and centrifugation, and the precipitate was re-dissolved in NaOH solution. Experiments were performed at a feed pH of 7.0, a feed surfactin concentration of 1.48 g L−1, and a cross-flow velocity of 0.32 m s−1 but at different transmembrane pressures (ΔP, 20–100 kPa). The resistance-in-series model was used to analyze the flux behavior, which involves the resistances of membrane itself and cake as well as those due to adsorption and solute concentration polarization. It was shown that the resistance due to solute concentration polarization and of membrane dominated under the conditions examined. The resistances due to cake formation and solute adsorption were comparable, and their sum contributed below 20% of the overall resistance.  相似文献   

9.
The detailed analysis of membrane phenomena in the system Nafion 120 membrane/NaOHaq at 298, 313 and 3n33 K has been performed, taking for discussion the phenomenological transport coefficients rii, fik and diffusion indices ir. Comparing the numerical values found here with the corresponding data determined for the system with NaCl solutions it is shown that cation-anion frictional force, which is usually assumed zero, cannot be neglected for the Na+-OH pair of ions. These interactions influence diffusional and osmotic transport of a solute and water across the membrane. Another specific effect of OH ions important for membrane permeation is the very low friction of OH ions with water.  相似文献   

10.
A model is developed to express the solute diffusion coefficient through semicrystalline polymeric networks. The crystallites create impermeable diffusional barriers around the amorphous regions. Solute diffusion is determined by applying a transport model to the amorphous phase and incorporating the crosslinked polymer structure characteristics. This model is tested with theophylline and vitamin B12 permeation experiments through semicrystalline poly(vinyl alcohol) membranes prepared by annealing of amorphous PVA membranes. The degree of crystallinity varies between 23.1 % and 40.5 % on a dry basis. The solute diffusion coefficients correlate well with various parameters of the model.  相似文献   

11.
A graphene oxide (GO) membrane is supported on a ceramic hollow fiber prepared by a vacuum suction method. This GO membrane exhibited excellent water permeation for dimethyl carbonate/water mixtures through a pervaporation process. At 25 °C and 2.6 wt % feed water content, the permeate water content reached 95.2 wt % with a high permeation flux (1702 g m?2 h?1).  相似文献   

12.
Investigations were made of the water flux rate and rejection characteristics of aromatic substances in aqueous solutions using a thin, dense cellulose acetate membrane in reverse osmosis experiments. The aromatic substances used were phenol, aniline, hydroquinone and p-chlorophenol. The permeate became more enriched in aromatic compounds as compared to the feed solution as the water content of the membrane increased. By considering both the effects of pressure on the chemical potential of a component and the contribution of viscous flow to the overall transport of that component in the hydrated membrane, a theoretical relationship was developed to predict the negative solute rejection of the membrane. Based on this proposed theory, the permeability coefficients of water and organic solute were estimated from experimental solute rejection data, including negative values. The permeability coefficients of components were in good agreement with previously established correlations in measurements of partition and diffusion coefficients.  相似文献   

13.
Concentration polarization affects almost all the membrane separation processes and can be the cause of a substantial reduction in the separation factor and flux. A generalized equation relating the modified Peclet number to the concentration polarization occurring in the boundary layer is proposed and shown applicable to the majority of membrane separation processes like gas separations, reverse osmosis, ultrafiltration, pervaporation, and dissolved gas permeation in liquid. The membrane permeability, separation factor (or solute rejection), membrane thickness, boundary layer mass transfer coefficient, and Henry's law coefficient are the factors that determine the extent of polarization. An analysis is presented to offer a clean division of the hydrodynamic effect from the pure membrane property for membrane separation processes of liquid phases. Also the effect of membrane thickness on polarization is discussed. An attempt has been made to reconcile the different approaches taken for different membrane processes in the literature. Experimental data from widely different sources illustrate and confirm the present theory for pervaporative separation of dilute solutions of volatile organic compounds, dissolved gas permeation, and ultrafiltration of proteins and carbowax. Specific suggestions are made to obtain independent experimental measurements of the Peclet number and polarization index in terms of measurable quantities like the actual and intrinsic separation factors.  相似文献   

14.
The objective of this study was to investigate the retention of phosphate anions, H2PO4 and HPO42−, by nanofiltration. The first part of this study deals with the characterisation of the NF200 membrane used in permeation experiments with aqueous solutions of neutral organic and charged inorganic solutes. In the second part the effects of feed pressure, ionic strength, concentration and pH on the retention of phosphate anions were investigated. Results show that the membrane is negatively charged, its pore radius is around 0.5 nm and the retention order for the salts tested was R(Na2SO4) > R(NaCl) > R(CaCl2). The retentions of phosphate anions are in the order of 85% for H2PO4 and 96% for HPO42−. They are relatively high when compared to retentions of other anions with the same charge. The retentions of phosphate anions, particularly the monovalent species, depend on the chemical parameters (feed concentration, ionic strength, and pH) and applied pressure. The experimental data were analysed using the Speigler–Kedem model and the transport parameters, i.e., the reflection coefficient (σ) and solute permeability (Ps) have been determined.  相似文献   

15.
Solute transport by diffusion combined with convection through a single hollow-fiber membrane fixed on an axis of a circular tube was studied precisely. Purified water and an aqueous solution of a solute were fed at constant flow rates into the circular tube and the lumen of the membrane, respectively, and oscillations with a long periodical time were observed in the concentration of solution discharged from the lumen. Results obtained with varying experimental conditions (different solutes, membranes and flow rates at the lumen inlet and outlet) suggest that the oscillations are related to solute transport caused by convection flow through the membranes.  相似文献   

16.
Rejection of adsorbing solutes by ultrafiltration membranes is not adequately described by the steric rejection theory [3]. Solute adsorption (fouling) changes the shape of the rejection curve. Typically, the measured curves are steeper than the theoretical curve. The shape of the curve can be predicted qualitatively from simple theoretical considerations. For adsorbing solutes, single-solute and multiple-solute ultrafiltration experiments give different results. Relative thickness of adsorbed solute layer in a membrane pore was found to depend on (1) solute size, (2) solute hydrophobicity, (3) pH and ionic strength for a protein solute, (4) solute concentration, and (5) time of adsorption. Large differences observed between water fluxes and fluxes of very dilute polymer solutions through the same membrane are also interpreted in terms of solute adsorption.  相似文献   

17.
In this study, asymmetric cellulose acetate membranes with moderate NaCl rejection (85.5%) were prepared and used to study the influence of the chemical nature of organic solutes in different organic solvents. The solute rejection and the solvent flux of linear hydrocarbons (Mw=226–563 g/mol) and linear carboxylic acids (Mw=228–340 g/mol) in ethanol and hexane were studied as a function of the molecular weight, the feed concentration and the transmembrane pressure.The ethanol flux was three times higher than the hexane flux. The rejection coefficients for both types of solute were quire acceptable (R=60–90%), when ethanol was the solvent. In hexane the linear hydrocarbons showed a rejection of 40–60%, while all carboxylic acids reached a negative rejection of −40 to −20%. This negative “observed” rejection can be attributed to accumulation of carboxylic acid at the membrane; the solute concentration at the membrane becomes much higher than in the bulk solution, due to a higher affinity of the solute with the membrane in hexane than in ethanol. Sorption experiments support this hypothesis.Furthermore, it was found that the rejection increases with increasing molecular weight and the rejection and flux are hardly affected by the feed concentration.  相似文献   

18.
Despite their prevalent use as a surrogate for partitioning of pharmacologically active solutes across lipid membranes, the mechanism of transport across water/octanol phase boundaries has remained unexplored. Using molecular dynamics, graph theoretical, cluster analysis, and Langevin dynamics, we reveal an elegant mechanism for the simplest solute, water. Self-assembled octanol at the interface reversibly binds water and swings like the hinge of a door to bring water into a semi-organized second interfacial layer (a “bilayer island”). This mechanism is distinct from well-known lipid flipping and water transport processes in protein-free membranes, highlighting important limitations in the water/octanol proxy. Interestingly, the collective and reversible behavior is well-described by a double well potential energy function, with the two stable states being the water bound to the hinge on either side of the interface. The function of the hinge for transport, coupled with the underlying double well energy landscape, is akin to a molecular switch or shuttle that functions under equilibrium and is driven by the differential free energies of solvation of H2O across the interface. This example successfully operates within the dynamic motion of instantaneous surface fluctuations, a feature that expands upon traditional approaches toward controlled solute transport that act to avoid or circumvent the dynamic nature of the interface.

Despite their pharmacological relevance, the mechanism of transport across water/octanol phase boundaries has remained unexplored. Octanol molecular assemblies are demonstrated to reversibly bind water and swing like the hinge of a door.  相似文献   

19.
The orientation of planar molecules in stretched polymer films has been studied by means of absorption spectroscopy with linearly polarized light. Solute orientation was considered as a function of the solute structure, polymer structure, polymer orientation and of the temperature. We conclude that orientation of the solute cannot derive primarily from attractive interactions between solute and polymer matrix.  相似文献   

20.
In this work, mostly Nernst–Planck derived relationships were used to simulate the electrodialytic recovery of a strong electrolyte, namely sodium chloride. To this end, it was set up a five-step experimental procedure consisting of zero-current leaching, osmosis, and dialysis, electro-osmosis, desalination, current–voltage and validation tests. The contribution of leaching and solute diffusion across the electro-membranes was found to be negligible with respect to the electro-migration. On the contrary, solvent diffusion tended to be important as the solute concentration difference at the membrane sides increased or current density was reduced. The electro-osmosis and desalination tests yielded the water and solute transport numbers.

By performing several limiting current tests at different solute concentrations and feed flow rates using anionic or cationic membranes, it was possible to determine simultaneously the limiting current intensity, the ratio of the differences between the counter-ion transport numbers in the anion- and cation-exchange membranes and solution, the overall resistance of the electro-membranes, the effective membrane surface area, and the solute mass transfer coefficient.

All these process and design parameters allowed the time course of the solute concentration in the concentrating (C) and diluting (D) compartments, as well as the voltage applied to the electrodes, to be reconstructed quite accurately without any further correction factors. The capability of the above parameters to simulate the performance of the electrodialysis (ED) unit was checked by resorting to a few validation tests, that were performed in quite different operating conditions from those used in the training tests, that is by filling tank C with a low feed volume with a low solute concentration and applying a constant current intensity to magnify the effect of electro-osmosis or by changing the current intensity step-wisely to simulate the continuous-mode operation of a multistage ED unit. Finally, a parameter sensitivity analysis made the different contribution of the process and design parameters to be assessed, thus yielding a straightforward procedure for designing or optimising accurately ED desalination units up to a final salt concentration of about 1.7 kmol m−3.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号