首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

2.
Dense membranes made by crosslinking of poly(vinyl alcohol) (PVA) with poly(acrylic acid) (PAA) were prepared and tested in pervaporation and differential permeation of water–alcohol mixtures. Instead of a decrease of permeation flux as generally observed with most crosslinking agents, an increase in the permeability was observed with PAA crosslinked membranes at low PAA contents. The permeation flux increases with PAA contents in the polymer with no selectivity reduction for membranes containing less than 15 wt. % PAA. The membranes show good performances to water–2-propanol and water–ethanol mixtures, i.e. high fluxes and high selectivities to pure water. The membranes were stable and highly permeable to water. The enhancement of the permeability of PVA can be explained by a reduced crystallinity and an improved diffusivity due to the presence of PAA.  相似文献   

3.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

4.
Pervaporative performances were investigated for dehydration of water–acetonitrile using nanocomposite metal oxide and Pervap® 2202 membranes. Poly (vinyl alcohol) based nanocomposite metal oxide membranes were prepared through co-precipitation of different amounts of Fe (II) and Fe (III). The freestanding nanocomposite metal oxide membranes were characterized by Transmission electron microscopy and X-ray diffraction. Sorption studies evaluated the extent of interaction and degree of swelling of the membranes. Fe containing PVA polymer matrix showed improved flux and selectivity. In order to observe simultaneous effect of flux and selectivity, pervaporation separation index showed 10 wt.% iron oxide containing membrane is the most amongst all tested. The diffusion coefficients were calculated using pervaporation results and sorption kinetics data. An attempt was made to predict sorption selectivity thermodynamically. PV separation factor was observed to be governed by sorption and/or diffusion phenomena and sorption selectivity was found to be higher than PV separation factor. Prediction of concentration profile in the membrane was also attempted and the results showed that water concentration in the membrane drops down with increase in membrane thickness.  相似文献   

5.
Different viscosity grade sodium alginate (NaAlg) membranes and modified sodium alginate membranes prepared by solution casting method and crosslinked with glutaraldehyde in methanol:water (75:25) mixture were used in pervaporation (PV) separation of water+acetic acid (HAc) and water+isopropanol mixtures at 30 °C for feed mixtures containing 10–50 mass% of water. Equilibrium swelling experiments were performed at 30 °C in order to study the stability of membrane in the fluid environment. Membranes prepared from low viscosity grade sodium alginate showed the highest separation selectivity of 15.7 for 10 mass% of water in the feed mixture, whereas membranes prepared with high viscosity grade sodium alginate exhibited a selectivity of 14.4 with a slightly higher flux than that observed for the low viscosity grade sodium alginate membrane. In an effort to increase the PV performance, low viscosity grade sodium alginate was modified by adding 10 mass% of polyethylene glycol (PEG) with varying amounts of poly(vinyl alcohol) (PVA) from 5 to 20 mass%. The modified membranes containing 10 mass% PEG and 5 mass% PVA showed an increase in selectivity up to 40.3 with almost no change in flux. By increasing the amount of PVA from 10 to 20 mass% and keeping 10 mass% of PEG, separation selectivity decreased systematically, but flux increased with increasing PVA content. The modified sodium alginate membrane with 5% PVA was further studied for the PV separation of water+isopropanol mixture for which highest selectivity of 3591 was observed. Temperature effect on pervaporation separation was studied for all the membranes; with increasing temperature, flux increased while selectivity decreased. Calculated Arrhenius parameters for permeation and diffusion processes varied depending upon the nature of the membrane.  相似文献   

6.
Blend membranes of poly(vinyl alcohol) (PVA) and nylon 66 (NYL) were synthesized and crosslinked with glutaraldehyde (GA) and assessed for their suitability in dehydrating 2-butanol by pervaporation (PV). These blends were subjected to sorption studies to determine the extent of interaction and degree of swelling in pure liquids as well as binary mixtures. Wide-angle X-ray diffraction (WAXD) and thermal gravimetric analysis (TGA) were carried out to investigate changes in crystallinity and thermal stability, respectively. The effect of experimental parameters such as feed water concentration, permeate pressure and barrier thickness on membrane flux and selectivity was evaluated. The membranes were found to have good potential for breaking the azeotrope of 27.6 wt.% water with a flux of 3.07 kg/m2 h 10 μm and selectivity of 26.5. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas opposite trends were observed in case of flux. Higher permeate pressure caused a reduction in both flux and selectivity. These effects were clearly elucidated.  相似文献   

7.
Sweep gas membrane distillation was examined as a possible technique for isopropanol (IPA)–water separation using PTFE hollow fiber membrane module. The composition and flux of the permeate were monitored when feed concentration, operating temperature and flow rate were varied. The upper feed concentration tested was 10 wt.% IPA. Within the feed temperature range of about 20–50°C, IPA selectivity of 10–25 was achieved. Since the concentration near the surface on the membrane increased by the selective adsorption of IPA on the hydrophobic membrane, the selectivity increases. The permeate flux and IPA selectivity increase as feed temperature increase. The flux and selectivity increase at higher flow rates is mainly due to the reduced effects of concentration and temperature polarization. The effect of salt addition to the feed mixture was also examined.  相似文献   

8.
A novel PBI/P84 co-polyimide dual-layer hollow fiber membrane has been specifically fabricated through the dry-jet wet phase inversion process, for the first time, for the dehydration pervaporation of tetrafluoropropanol (TFP). Polybenzimidazole (PBI) was chosen as the outer selective layer because of its superior hydrophilic nature and excellent solvent-resistance together with robust thermal stability, while P84 co-polyimide was employed as the inner supporting layer because of its good solvent-resistance and thermal stability. The PBI/P84 membrane exhibits superior water selectivity and relatively high permeation flux. At 60 °C, the PBI/P84 dual-layer hollow fiber membrane shows a permeation flux of 332 g/(m2 h) and a separation factor of 1990 for a feed solution containing of 85 wt% TFP. The preferential water sorption and the significant diffusivity difference between TFP and water are the main causes of high separation factor. However, an increase in feed temperature will greatly increase the permeation flux but seriously decrease the water selectivity. The activation energy data verify that water can preferentially permeate the PBI membrane due to the strong water affinity of PBI and a much smaller molecular size of water.  相似文献   

9.
Sulfonated cardo polyetherketone (SPEK-C) and poly(vinyl alcohol) (PVA) blend membranes were prepared by solution casting method and used in pervaporation (PV) dehydration of acetic acid. The membranes were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle meter. The results show that thermal crosslinking occurred to the membrane under high temperature annealing. The effective d-spacing (inter-segmental spacing) decreased with PVA content decreasing. The hydrophilicity of the blend membrane increased with SPEK-C content increasing. Swelling and sorption experiments show that the swelling degree of the blend membrane increased, however both the sorption and diffusion selectivities decreased with increasing PVA content. The diffusion selectivity is higher than the sorption selectivity. This suggests that PV dehydration of acetic acid is dominated by the diffusion process. The pervaporation separation index (PSI) of the membrane increases with increasing PVA content and arrives at a maximum when the SPEK-C/PVA ratio is 3/2, then decreases with further addition of PVA. The membrane has an encouraging separation performance with a flux of 492 g m−2 h−1 and separation factor of 59.3 at 50 °C at the feed water content 10 wt%.  相似文献   

10.
PVA/PVP互穿网络膜的渗透蒸发性质(Ⅱ)   总被引:6,自引:1,他引:5  
用4,4′-双叠氮-2,2′-二磺酸钠(DAS)和戊二醛对聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)依次进行光化学交联和化学交联,制备了具有互穿网络结构的渗透蒸发膜.研究了它们用于醇、酮和醚等有机溶剂脱水的渗透蒸发性质.结果表明,对于大多数有机溶剂,随着共混膜中PVP含量的增加,膜的渗透性明显提高,而膜的选择性有所下降.但用于THF脱水时,膜的选择性和渗透性均随着PVP含量的增加而增加.交联使膜的力学性能得到改善  相似文献   

11.
聚乙烯醇辐照交联共聚物渗透气化分离膜   总被引:11,自引:1,他引:11  
研究了聚乙烯醇(PVA)与丙烯酰胺丙烯酸钠共聚物(PcoAANa)的辐照交联共聚物膜用于水-乙醇混合物的渗透气化分离,随着PcoAANa在共聚物中的含量由0%上升到35%,透量及分离系数同时增大,膜材料对混合物中水及乙醇的选择性溶解,对渗透气化过程起重大影响。求出了水、乙醇及其混合物的表现透过活化能.水,乙醇和混合物的平均扩散系数在水含量为40%时出现极大值。  相似文献   

12.
Novel nanocomposite polymeric membranes containing nanosized (30–100 nm) polyaniline (PANI) particles dispersed in poly(vinyl alcohol) (PVA) were prepared and used in the pervaporation separation of water–isopropanol feed mixtures ranging from 10 to 50 mass% of water at 30 °C. Of the three nanocomposite membranes prepared, the membrane containing 40:60 surface atomic concentration ratio of PANI:PVA produced the highest selectivity of 564 compared to a value of 77 observed for the plain PVA membrane. Flux of the nanocomposite membranes was lower than those observed for the plain PVA membrane, but selectivity improved considerably. Membranes were characterized by differential scanning calorimetry, dynamic mechanical thermal analyzer, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The highest selectivity with the lowest flux was observed for 10 mass% water containing feed mixture. Flux increased with increasing amount of water in the feed, but selectivity decreased considerably. These results were attributed to the acid-doped PANI particles in the PVA membrane as a result of change in the micromorphology of the nanocomposite membranes. In addition, molar mass between cross-links and fractional free volume of the membranes are responsible for the varying membrane performance. Temperature effect on permeability was investigated for 10 mass% water containing feed with the membrane containing higher concentration of PANI particles, the presence of which could be responsible for varied effect of water permeation through the membrane. Membranes of this study could remove as much as 98% of water from the feed.  相似文献   

13.
Pervaporation (PV) separation of water + isopropanol and water + 1,4-dioxane mixtures has been attempted using the blend membranes of poly(vinyl alcohol) (PVA) with 5 wt.% of poly(methyl methacrylate) (PMMA). These results have been compared with the plain PVA membrane. Both plain PVA and PVA/PMMA blend membranes have been crosslinked with glutaraldehyde in an acidic medium. The membranes were characterized by differential scanning calorimetry and universal testing machine. Pervaporation separation experiments have been performed at 30 °C for 10, 15, 20, 30 and 40 wt.% of feed water mixtures containing isopropanol as well as 1,4-dioxane. PVA/PMMA blend membrane has shown a selectivity of 400 for 10 wt.% of water in water + isopropanol feed, while for water + 1,4-dioxane feed mixture, membrane selectivity to water was 104 at 30 °C. For both the feed mixtures, selectivity for the blend membrane was higher than that observed for plain PVA membrane, but flux of the blend membrane was lower than that observed for the plain PVA membrane. Membranes of this study are able to remove as much as 98 wt.% of water from the feed mixtures of water + isopropanol, while 92 wt.% of water was removed from water + 1,4-dioxane feed mixtures at 30 °C. Flux of water increased for both the feed mixtures, while the selectivity decreased at higher feed water concentrations. The same trends were observed at 40 and 50 °C for 10, 15 and 20 wt.% of water mixtures containing isopropanol as well as 1,4-dioxane feed mixtures, which also covered their azeotropic composition ranges. Membrane performance was studied by calculating flux (Jp), selectivity (), pervaporation separation index (PSI) and enrichment factor (β). Permeation flux followed the Arrhenius trend over the range of temperatures investigated. It was found that by introducing a hydrophobic PMMA polymer into a hydrophilic PVA, the selectivity increased dramatically, while flux decreased compared to plain PVA, due to a loss in PVA chain relaxation.  相似文献   

14.
A central composite rotatable design (CCRD) of response surface methodology was used to analyze pervaporation performance of homogeneous poly(vinyl alcohol) (PVA) membranes. A regression model was developed for the pervaporation flux and selectivity as a function of the operating conditions: temperature, concentration and flow-rate. Dehydration experiments were performed on two different alcohol–water systems: isopropanol–water (IPA–water) and ethanol–water (Et–water) mixtures around their azeotropic concentrations. Based on preliminary experiments and CCRD design, the ranges of values of the operating conditions were selected: temperature 33–67 °C, feed flow-rate 46–114 L/h, and concentration 83–92 wt% for IPA and 93–98 wt% for Et in feed mixtures. A total of 20 pervaporation experiments were conducted for each alcohol–water system. Judged by the lack-of-fit criterion, the analysis of variance (ANOVA) showed the regression model to be adequate. From the regression analysis, the flux and selectivity were expressed with quadratic equations of temperature, feed concentration and flow-rate. The predicted flux and selectivity from the regression model were presented in 3D surface plots. For both alcohol–water systems, quadratic terms of temperature and feed alcohol concentration showed significant (p < 0.0001) influence on the flux and selectivity. A strong interaction effect of temperature and concentration was observed on the selectivity for the Et–water system. However, the interaction of flow-rate with temperature or concentration was found to be less significant. In order to optimize the pervaporation flux and selectivity of azeotropic alcohol–water mixtures, the desirability function approach was applied to analyze the regression model equations by commercial software. For the azeotropic IPA–water mixture (87.5 wt% IPA), the optimized dehydration variables were found to be 50.5 °C and 93.7 L/h for temperature and flow-rate, respectively. For the azeotropic Et–water mixture (95.5 wt% Et), the optimized temperature and flow-rate were found to be 57 °C and 89.2 L/h, respectively. Compared with experiments performed at optimized temperature and flow-rate, the predicted flux and selectivity of the azeotropic mixtures showed errors to be within 3–6%.  相似文献   

15.
Polyvinyl alcohol (PVOH) membrane, was modified both physically and chemically by incorporation of inorganic filler, sodium aluminosilicate and chemical crosslinking with maleic acid and glutaraldehyde. The change of morphology and crystallinity of PVOH by this physical and chemical modification was studied by FTIR, DSC, TGA, SEM and XRD. These membranes were evaluated in terms of its potential for dehydration of dioxane by preferential sorption and permeation using pervaporation (PV) technique. These membranes were cast in the laboratory by solution casting from the polymer and other additives. The performance of the unfilled (containing no filler) glutaraldehyde (GA) crosslinked PVOH-1 and maleic acid (MA) crosslinked PVOH-2 membranes were compared with filled (containing aluminosilicate filler) but GA crosslinked PVOH-3 and filled but MA crosslinked PVOH-4 membranes. The filled membranes were found to show higher flux and water selectivity. Among all the four used membranes, the MA crosslinked filled PVOH-4 membrane was found to show best results in terms of both water selectivity and flux.  相似文献   

16.
An emulsion of poly(methyl methacrylate) (PMMA) was prepared using poly(vinyl alcohol) (PVA) of low degree of hydrolysis with a cloud point as a protective colloid. The behaviour of an aqueous solution of PVA with 80% degree of hydrolysis was first investigated in terms of the Huggins constant in viscometry. MMA was polymerized using the PVA at 20 °C, where no abnormality in the aqueous PVA was observed. The change in transmittance of the emulsion observed with a UV–vis photometer revealed that in the case of UV light of wavelength 370 nm, the transmittance decreased markedly at around 30 °C with an increase in temperature, and then increased with a decrease in temperature. The thermosensitive property resulted from PVA with a low degree of hydrolysis with a cloud point, at a higher temperature of which the PVA loses solubility in water owing to weakening of the hydrogen bond between PVA molecules and water.  相似文献   

17.
Using a solution technique, chitosan-based polyelectrolyte complexes (PECs) were developed as pervaporation membranes by incorporating phosphotungstic acid (PTA). The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Membranes were tested for their ability to separate water–isopropanol mixtures by pervaporation in the temperature range of 30–50 °C. The experimental results demonstrated that both flux and selectivity were increased simultaneously with increasing PTA content in the membrane. The permeation flux of pure chitosan membrane was increased dramatically from 4.13 to 11.70 × 10−2 kg/m2 h and correspondingly its separation factor was increased from 4490 to 11,241 and then decreased to 7490 at 30 °C for 10 mass% of water in the feed. The total flux and flux of water were found to be almost overlapping particularly for PECs membranes, suggesting that these could be used effectively to break the azeotropic point of water–isopropanol mixtures. From the temperature dependency of diffusion and permeation values, the Arrhenius activation parameters were estimated and discussed in the context of membranes efficiency. The pure chitosan and a small amount of PTA-incorporated PECs membranes exhibited positive heat of sorption while other PECs membranes exhibited negative heat of sorption, giving exothermic contribution.  相似文献   

18.
Systematic membrane selection, process design as well as elucidation of structure–property relationships for pervaporation and vapor permeation require knowledge of sorption and diffusion properties. Direct measurement of sorption is not possible in the case of commercial membranes due to the presence of a support layer. Sorption measurements may also be difficult if the polymer is synthesized or crosslinked directly on the support and its properties are different from the bulk polymer. This work describes a technique to obtain sorption as well as diffusion parameters for supported membranes using transient permeation data. Computer simulations for transient permeation were carried out using sorption and diffusion data from the literature. It was demonstrated that the desired parameters could be estimated using data having a reasonable degree of error (±2%) by the least squares method. Alternatively, a time-lag analysis may be used instead of direct regression of the parameters by the least squares method. A general method for estimating the sorption as well as diffusion parameters using the time-lag and steady-state flux is described. Analytical solutions are derived for the various transport models, wherever possible.  相似文献   

19.
Chitosan was functionalized either by introducing a phosphonic acid group or by quaternization of existing primary ammonium groups in order to make it a water-soluble material. Functionalized chitosans and poly(vinyl alcohol) (PVA)-based nanoporous charged membranes were prepared in aqueous media and gelated in methanol at 10 degrees C to tailor their pore structure. These membranes were extensively characterized for their physicochemical, electrochemical, and permeation characteristics using FTIR, TGA, DSC, water content, ion-exchange capacity, ionic transport properties, and membrane permeability studies. N-Methylene phosphonic chitosan (NMPC)/PVA-based membranes exhibited mild cation selectivity and quaternized chitosan (QC)/PVA composite membranes had mild anion selectivity, while a blend of NMPC-QC/PVA membranes exhibited weak cation selectivity because of formation of zwitterionic structure. Viscosity measurements and interaction studies for individual and mixed solutions of NMPC and QC were carried out for the prediction of charge interactions between -PO3H2 and -N+(CH3)3 groups and effect on molecular weight due to functionalization. Elaborate electrochemical and permeation experiments were conducted in order to predict suitability of these membranes for the separation of mono- and bivalent electrolytes based on their hydrated ionic radius, and it was found that among all the synthesized membranes, PC/QC-30 had the highest relative permeability, which may extend its suitability for electrolyte separations. Observations were correlated with equivalent pore radius of the different membranes as estimated by membrane permeability measurements.  相似文献   

20.
Direct methanol fuel cells (DMFCs) are promising portable power sources. However, their performance diminishes significantly because of high methanol crossover (flux) in the polymer electrolyte membrane (e.g., Nafion 117) at the desired stoichiometric methanol feed concentration. In this study, the diffusion and sorption of methanol and water in Nafion 117 were measured using time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. This technique is unique because of its ability to measure multicomponent diffusion and sorption within a polymer on a molecular level in real time as function of concentration. Both the effective mutual diffusion coefficients and concentrations of methanol and water in Nafion 117 were determined with time-resolved FTIR-ATR spectroscopy as a function of methanol solution concentration. The methanol flux, calculated from FTIR-ATR, matched that determined from a conventional technique (permeation cell) and increased by almost 3 orders of magnitude over the methanol solution concentration range studied (0.1-16 M). Furthermore, the data obtained in this study reveal that the main contribution to the increase in methanol flux is due to methanol sorption in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号