首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The development of ultra-inert composites using fluorinated carbon fibres as the reinforcement requires fluorinated carbon fibres with a durable surface composition. Here we report the effect of direct fluorination using an F2/N2 mixture at 653 K on the surface and bulk properties of two types of high strength carbon fibres. These were treated up to a surface fluorine content of ∼64 at.% and a bulk fluorine content of ∼15 mass%. A colour change was observed after fluorination caused by the changes in the graphitic band structure of the carbon fibres by the introduction of carbon sp3 hybridisation. The tensile strength and Young's modulus decrease after fluorination by up to 33 and 22%, respectively. XRD shows marginal changes in the interlayer distance but the crystallite size increases. Changes in the electrical conductivity of the fluorinated carbon fibres indicate that the modification is confined to the near surface volume. Predominantly covalent C-F bonds are formed as shown by X-ray photoelectron spectroscopy (XPS) and measured zeta (ζ)-potentials. Hence the fluorinated fibres are hydrophobic and have low surface tensions. This and the large increase in fibre surface area, as determined by nitrogen adsorption, is expected to facilitate interfacial interaction between fluorinated carbon fibres and fluoropolymers.  相似文献   

2.
The surface of phenol-based activated carbon (AC) was fluorinated at room temperature with different F2:N2 gas mixtures for use as an electrode material in an electric double-layer capacitor (EDLC). The effect of surface fluorination on EDLC electrochemical performance was investigated. The specific capacitance of the fluorinated AC-based EDLC was measured in a 1 M H2SO4 electrolyte, in which it was observed that the specific capacitances increased from 375 and 145 F g−1 to 491 and 212 F g−1 with the scan rates of 2 and 50 mV s−1, respectively, in comparison to those of an unfluorinated AC-based EDLC when the fluorination process was optimized via 0.2 bar partial F2 gas pressure. This enhancement in capacitance can be attributed to the synergistic effect of increased polarization on the AC surface, specific surface area, and micro and mesopore volumes, all of which were induced by the fluorination process. The observed increase in polarization was derived from a highly electronegative fluorine functional group that emerged due to the fluorination process. The increased surface area and pore volume of the AC was derived from the physical function of the fluorine functional group.  相似文献   

3.
The pathway and degree of metallation of polymers were studied depending on the the conditions (temperature, concentration, nature, and component ratio) of metallation of poly(1-trimethylsilylprop-1-yne) (PTMSP) and poly(vinyltrimethylsilane) (PVTMS) by superbases, viz., BunLi and BusLi, in combination with potassium tert-pentyl oxide (PetOK). For the BunLi—PetOK system (1 : 3), the yield of modified PTMSP reached 90%. In the case of PTMSP, only the Me groups at the double bonds and at the Si atoms undergo metallation, whereas only the Me groups at the Si atoms are metallated in PVTMS. The kinetics of metallation with the BunLi—PetOK system was studied.  相似文献   

4.
Fundamental features and industrial applications of the direct fluorination of polymers are reviewed. Fundamental features of the direct fluorination of a set of polymers, such as polystyrene, polyethyleneterephthalate, poly(2,6-dimethyl-1,4-phenylene oxide), PMMA, LDPE (two types), HDPE (six types), polyvinyltrimethylsilane, poly(4-methyl-pentene-1), polyimide Matrimid 5216®, polysulfones, polyetheretherketone, polycarbonatesiloxane, polysulphone-polybuthadiene block-copolymers, polypropylene, PVF, PVDF, etc. are described. Influence of composition of the fluorinating mixture (F2-He-N2-O2-HF), fluorine partial pressure, temperature and fluorination duration, on the rate of formation of the fluorinated layer and the chemical composition, density, refraction index, surface energy, gas separation properties and friction coefficient of fluorinated layer have been investigated. Processes of formation and termination of long-living and short-living radicals and grafting of acrylonitrile to fluorinated polymers have been studied. Industrial applications of the direct fluorination to enhance the commercial properties of polymeric goods, such as separation factor of polymeric membranes for gas separation, barrier properties of polymer vessels, pipes and packagings, adhesion, printability, wetting and transparency in visible and IR are reviewed.  相似文献   

5.
Due to their extreme reactivity, fluorine and fluorinated gases may be used to modify the surface properties of numerous materials. In the following, the surface fluorination of some carbon-based compounds (graphite, graphitised carbon fibres, carbon blacks and elastomers) using CF4 rf plasma technique and direct F2-gas fluorination is proposed. From XPS studies, the different types of CF bonding obtained in the materials after treatment have been correlated either to the physico-chemical characteristics of the pristine material or to the experimental parameters of the fluorination. Reaction mechanisms are proposed.  相似文献   

6.
The optical emission from tetrafluoromethane plasma (2% argon included) has been studied by emission spectroscopy. The evolution ofCF *,CF 2 * , andF emissions has been followed during the treatment of an organic surface. An-alkane, hexatriacontane, has been used as a model for high density polyethylene surface and treated in different plasma conditions. We found that the evolution of fluorinated species emissions in the plasma gas phase is not only a measurement of the reactive species concentrations, but also an indication of the surface modifications. The surface properties, such as surface energy and surface roughness are correlated to the emission intensity of reactives species in the plasma gas phase. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions.  相似文献   

7.
Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) has been crosslinked using 3,3′-diazidodiphenylsulfone to improve its solvent resistance and physical stability. This study reports the influence of crosslinking on N2, O2 and CH4 gas permeabilities and fractional free volume (FFV) as a function of time. Crosslinking PTMSP renders it insoluble even in excellent solvents for the uncrosslinked polymer. The gas permeability and FFV of uncrosslinked and crosslinked PTMSP decreased over time, so crosslinking PTMSP does not arrest physical aging. The addition of 10 wt.% polysiloxysilsesquioxanes (POSS) nanoparticles decreased the permeability of PTMSP by 55%, and the permeability and FFV values were stable over time for PTMSP films containing 10 wt.% POSS nanoparticles. The permeability of PTMSP at a given FFV was greater than that of other substituted polyacetylenes, polysulfones or polycarbonates, which is consistent with differences in the arrangement of free volume in these polymers, as probed by positron annihilation lifetime spectroscopy (PALS). Ellipsometry was used to characterize physical aging of thin (400 nm) uncrosslinked and crosslinked PTMSP films supported on silicon wafers. The ellipsometry results showed that crosslinking does not markedly slow physical aging of thin PTMSP films.  相似文献   

8.
Aiming at clarifying the interplay on TiO2 photoactivity between particle morphology and surface fluorination, the photocatalytic performance of anatase nanocrystals, characterized by a pseudo-spherical shape or a nanosheet structure, is investigated in both a reduction and an oxidation reaction, either in the absence or in the presence of added fluoride anions. Cr(VI) photocatalytic reduction is strongly favored by a large exposure of anatase {001} facets; however, surface fluorination leads in this case to a morphology-independent photoactivity decrease, due to the decreased adsorption of the reaction substrate. More interestingly, a beneficial synergistic effect between the platelet-like anatase morphology and TiO2 surface fluorination is clearly outlined in Rhodamine B photocatalytic degradation, possibly resulting from the intrinsic ability of fluorinated {001} anatase facets of boosting ?OH radical mediated oxidation paths, due to their larger amount of surface –OH groups, as revealed using Fourier-transform infrared spectroscopy.  相似文献   

9.
Polyisoprene‐block‐poly(vinyl trimethylsilane) (PI‐b‐PVTMS) block copolymers having different isoprene contents are successfully chemically modified and characterized by proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. Gas transport properties of the initial block copolymers and their derivatives modified via hydrosilylation and hydrogenation are measured. The modified block copolymers show higher permeabilities for O2 and H2 than the unmodified block copolymers while maintaining similar O2/N2 and H2/N2 selectivities. Hydrosilylation and hydrogenation of block copolymers with a low isoprene content result in a permeability increase for O2 and H2 of 15 to 40%, respectively. Similarly, for block copolymers with high isoprene contents, increases in permeabilities up to 125% are observed compared to initial PI‐b‐PVTMS. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2013 , 51, 1252–1261  相似文献   

10.
A fluorination reactor was designed and built in the laboratory. The optimal conditions of fluorination within the reactor were selected by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis of fluorinated surfaces of a film and a plaque of pure high-density polyethylene (HDPE). This reactor was used to post-mould fluorinate plaques and films of a range of mixtures of virgin and recycled HDPE with and without (re)introduction of additives. The ability to be fluorinated has shown no dependence on the composition virgin/recycled HDPE.Comparison of in-line and post-mould fluorinated samples showed that fluorine concentration profile in depth is thinner in the in-line fluorinated sample when compared with the post-mould fluorinated sample, though the fluorination degree in the extreme surface is larger in the in-line fluorinated sample. This is attributed to a migration of lower surface energy chain blocks towards the surface in the material at high temperatures, which is the case in the in-line fluorination, hindered in the post-mould fluorination where maximum temperature is below the melting point to keep the macroscopic shape. The additives played a minor role in the ability of the surface to be fluorinated.  相似文献   

11.
Gas sorption properties, permeability coefficients, and diffusion coefficients of a series of norbornene polymers are presented. Introduction of the Si(CH3)3 group into the polynorbornene (PNB) backbone chain results in significant increases in glass transition temperature, permeability, and diffusion coefficient for a number of gases (H2, O2, N2, CO2, CH4, C2H6). The transport properties and sorption isotherms for poly(5-trimethylsilyl norbornene) (PTMSNB) are very similar to those for poly(vinyltrimethyl silane) (PVTMS), which contains the same side-chain group but differs from PTMSNB by the structure of its main chain. For another silicon-containing polymer poly[5-(1,1,3,3-tetramethyl-1,3-disilabutyl) norbornene] (PDSNB) having a bulkier side-chain group, the glass-transition temperature is decreased in comparison with that of PNB, presumably owing to self-plasticization. Both silicon-containing norbornene polymers (PTMSNB and PDSNB) have permeability coefficients for “rapid” gases like H2 or CO2 of about 102 Barrer. The high values of the Langmuir sorption capacity C′H for PTMSNB and PVTMS, as well as the high diffusivity and mobility of spin probes in these polymers, were attributed to a large free volume related to the bulky Si(CH3)3 groups attached directly to the main chain. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The outstanding characteristics of fluorine gas, e.g., extreme reactivity and oxidizing power, and the utmost electronegativity of F ion, lead to very strong bonds between fluorine and most of the other elements of the periodical table. Treatments involving F2, fluorinated gases and rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: low-temperature reactions (even at room temperature), chemical modifications limited to surface only without changing the bulk properties, possible non-equilibrium reactions. Depending on the type of starting materials and employed techniques, the improved properties may concern wettability, adhesion, chemical stability, barrier properties, biocompatibility, grafting, mechanical behavior. Several examples of surface fluorination will be given on various types of carbon-based materials, elastomers and polymers.  相似文献   

13.
Durand  E.  Labrugère  C.  Tressaud  A.  Renaud  M. 《Plasmas and Polymers》2002,7(4):311-325
Because of their exceptional reactivity, fluorine and fluorinated gases are of primary importance for the modification of the surface properties of materials. This study is devoted to surface treatment of thin nitrile gloves, made of carboxylated nitrile butadiene rubber latex, using either direct fluorination (10% F2gas diluted in N2) or plasma-enhanced fluorination in radio-frequency cold plasmas using fluorinated gases (CF4, CHF3). Mechanisms of fluorination of these co-elastomers have been proposed on the basis of the assignment of the different components of the XPS spectra. Several mechanisms have been observed depending on the fluorination conditions. Although the modification of nitrile gloves is already effective for fluorination reactions at room temperature, an important activation is observed for experiments carried out at 90°C. When the treatments are carried out at room temperature, a gradual fluorination occurs: in the case of 10% diluted F2 gas, monofluorinated C—F groups are the species most found at the surface and perfluoro groups CF n are present in lower amount. An addition reaction takes place at the CH=CH double bonds of the polybutadiene entities, leading to CHF=CHF units. Whatever the fluorination method, thermal activation yields a more massive fluorination of the surface that finally leads to perfluorinated CF2 groups and terminal —CF3 groups.  相似文献   

14.
Fluorination of HDPE films (100 and 1800 μm thick) and LDPE films (100 μm thick) with elemental fluorine is described. The films were fluorinated at temperatures between 40°C and 100°C. The degree of fluorination was increased by increasing the concentration of fluorine in the F2/N2 gas mixture. A diffusion-controlled process was indicated by plotting the measured depth of fluorination against the square root of fluorination time. The chemistry of the process was studied by ESCA measurements or by energy dispersive analyses in the scanning electron microscope.  相似文献   

15.
The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Recent results on the surface modification of petroleum cokes and their electrochemical properties as anodes of secondary lithium batteries are summarized. The surface of petroleum coke and those heat-treated at 1860-2800 °C were fluorinated by elemental fluorine (F2), chlorine trifluoride (ClF3) and nitrogen trifluoride (NF3). No surface fluorine was found except only one sample when ClF3 and NF3 were used as fluorinating agents while surface region of petroleum coke was fluorinated when F2 was used. Transmission electron microscopic (TEM) observation revealed that closed edge of graphitized petroleum coke was destroyed and opened by surface fluorination. Raman spectra showed that surface fluorination increased the surface disorder of petroleum cokes. Main effect of surface fluorination with F2 is the increase in the first coulombic efficiencies of petroleum cokes graphitized at 2300-2800 °C by 12.1-18.2% at 60 mA/g and by 13.3-25.8% at 150 mA/g in 1 mol/dm3 LiClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). On the other hand, main effect of the fluorination with ClF3 and NF3 is the increase in the first discharge capacities of graphitized petroleum cokes by ∼63 mAh/g (∼29.5%) at 150 mA/g in 1 mol/dm3 LiClO4-EC/DEC.  相似文献   

17.
It has been demonstrated that the poly(vinyl fluoride) film can be fluorinated by exposing the polymer to an environment of fluorine under atmospheric pressure and at ambient temperature. Fluorine content, infrared spectra, thermal properties, and solubilities in the polar solvents were investigated for the fluorinated products and the following results were obtained. In the case of films less than 10 μ in thickness, the fluorination appeared to proceed homogeneously. Under any fluorinating conditions applied, i.e., fluorine pressure of up to 800 mm Hg and temperatures of up to 90°C, the fluorine content never exceeded 65% which corresponds to a composition of C2F2.5H1.5. The activation energy of the reaction was calculated to be 6.8 kcal/mole. The polymer reacted with a small amount of oxygen contained in the fluorine to form acyl fluoride groups. The fluorinated films became insoluble in boiling N,N-dimethylformamide, N,N-dimethylacetamide, and dimethyl sulfoxide, but colored gradually to a dark brown. The occurrence of some crosslinking in the products was revealed.  相似文献   

18.
Chemical–physical properties of ultra‐high‐molecular weight polyethylene (UHMWPE) treated by direct fluorination, direct fluorination accompanied with UV irradiation, by XeF2 and by TbF4, were tested by FTIR spectroscopy, visible spectroscopy, 19F and 13C NMR, scanning electron microscopy, XRD, and EPR. Surface energy measurements were carried out. The direct fluorination of UHMWPE is a diffusion‐controlled process, but treatment with XeF2 is a kinetically controlled one. Direct fluorination and direct fluorination accompanied with UV irradiation results mainly in a formation of ? CF2? groups. On the contrary, ? CHF? groups are prevailing in UHMWPE treated with XeF2 and TbF4. Surface texture of UHMWPE treated with XeF2 and with F2 is quite different. Direct fluorination results in a higher polarity of the polymer surface when compared with treatment with XeF2. For the case of direct fluorination, both long‐lived peroxy and fluoroalkylradicals are formed. For the case of treatment with XeF2, only fluoroalkylradicals were detected. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49:3559–3573, 2011  相似文献   

19.
A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO2 microspheres was developed. Formation of mesoporous TiO2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.  相似文献   

20.
Novel fluorinated polyurethanes (FPUs) were prepared by living radical polymerization of polyurethanes and hexafluorobutyl acrylate. The structures of the FPUs were characterized by FTIR, 1H NMR, GPC, DSC, and XPS. The fluorinated polyurethane polymerization was investigated and showed monomer conversion, and molecular weight increased with increasing reaction time. In this way, the fluorine content in polyurethane could be easily adjusted by controlling the content of the fluorinated acrylate monomer. The mechanical evaluation shows that FPUs exhibit good mechanical properties. Morphology of FPU films was observed by scanning electron spectroscopy. The effects of the fluorine content on the surface properties and oxidative stability of FPUs were investigated. FPUs films were devoid of significant surface degradation after immersion in 20% H2O2 and 0.1 M CoCl2 at 37 °C for 5 weeks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3248–3256, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号