首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single server M/G/1-queues with an infinite buffer are studied; these permit inclusion of server vacations and setup times. A service discipline determines the numbers of customers served in one cycle, that is, the time span between two vacation endings. Six service disciplines are investigated: the gated, limited, binomial, exhaustive, decrementing, and Bernoulli service disciplines. The performance of the system depends on three essential measures: the customer waiting time, the queue length, and the cycle duration. For each of the six service disciplines the distribution as well as the first and second moment of these three performance measures are computed. The results permit a detailed discussion of how the expected value of the performance measures depends on the arrival rate, the customer service time, the vacation time, and the setup time. Moreover, the six service disciplines are compared with respect to the first moments of the performance measures.  相似文献   

2.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

3.
Rietman  Ronald  Resing  Jacques 《Queueing Systems》2004,48(1-2):89-102
We analyse an M/G/1 queueing model with gated random order of service. In this service discipline there are a waiting room, in which arriving customers are collected, and a service queue. Each time the service queue becomes empty, all customers in the waiting room are put instantaneously and in random order into the service queue. The service times of customers are generally distributed with finite mean. We derive various bivariate steady-state probabilities and the bivariate Laplace–Stieltjes transform (LST) of the joint distribution of the sojourn times in the waiting room and the service queue. The derivation follows the line of reasoning of Avi-Itzhak and Halfin [4]. As a by-product, we obtain the joint sojourn times LST for several other gated service disciplines.  相似文献   

4.
Consider a symmetrical system of n queues served in cyclic order by a single server. It is shown that the stationary number of customers in the system is distributed as the sum of three independent random variables, one being the stationary number of customers in a standard M/G/1 queue. This fact is used to establish an upper bound for the mean waiting time for the case where at most k customers are served at each queue per visit by the server. This approach is also used to rederive the mean waiting times for the cases of exhaustive service, gated service, and serve at most one customer at each queue per visit by the server.  相似文献   

5.
6.
We define and analyze anM/G/1/N vacation model that uses a service discipline that we call theE-limited with limit variation discipline. According to this discipline, the server provides service until either the system is emptied (i.e. exhausted) or a randomly chosen limit ofl customers has been served. The server then goes on a vacation before returning to service the queue again. The queue length distribution and the Laplace-Stieltjes transforms of the waiting time, busy period and cycle time distributions are found. Further, an expression for the mean waiting time is developed. Several previously analyzed service disciplines, including Bernoulli scheduling, nonexhaustive service and limited service, are special cases of the general varying limit discipline that is analyzed in this paper.  相似文献   

7.
This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme.  相似文献   

8.
This paper considers the bi-level control of an M/G/1 queueing system, in which an un-reliable server operates N policy with a single vacation and an early startup. The server takes a vacation of random length when he finishes serving all customers in the system (i.e., the system is empty). Upon completion of the vacation, the server inspects the number of customers waiting in the queue. If the number of customers is greater than or equal to a predetermined threshold m, the server immediately performs a startup time; otherwise, he remains dormant in the system and waits until m or more customers accumulate in the queue. After the startup, if there are N or more customers waiting for service, the server immediately begins serving the waiting customers. Otherwise the server is stand-by in the system and waits until the accumulated number of customers reaches or exceeds N. Further, it is assumed that the server breaks down according to a Poisson process and his repair time has a general distribution. We obtain the probability generating function in the system through the decomposition property and then derive the system characteristics  相似文献   

9.
The paper investigates the queueing process in stochastic systems with bulk input, batch state dependent service, server vacations, and three post-vacation disciplines. The policy of leaving and entering busy periods is hysteretic, meaning that, initially, the server leaves the system on multiple vacation trips whenever the queue falls below r (⩾1), and resumes service when during his absence the system replenishes to N or more customers upon one of his returns. During his vacation trips, the server can be called off on emergency, limiting his trips by a specified random variable (thereby encompassing several classes of vacation queues, such as ones with multiple and single vacations). If by then the queue has not reached another fixed threshold M (⩽ N), the server enters a so-called “post-vacation period” characterized by three different disciplines: waiting, or leaving on multiple vacation trips with or without emergency. For all three disciplines, the probability generating functions of the discrete and continuous time parameter queueing processes in the steady state are obtained in a closed analytic form. The author uses a semi-regenerative approach and enhances fluctuation techniques (from his previous studies) preceding the analysis of queueing systems. Various examples demonstrate and discuss the results obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In this paper, we study a renewal input working vacations queue with state dependent services and Bernoulli-schedule vacations. The model is analyzed with single and multiple working vacations. The server goes for exponential working vacation whenever the queue is empty and the vacation rate is state dependent. At the instant of a service completion, the vacation is interrupted and the server resumes a regular busy period with probability 1???q (if there are customers in the queue), or continues the vacation with probability q (0?≤?q?≤?1). We provide a recursive algorithm using the supplementary variable technique to numerically compute the stationary queue length distribution of the system. Finally, using some numerical results, we present the parameter effect on the various performance measures.  相似文献   

11.
This paper treats an M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Whenever the system becomes empty at a service completion instant, the server goes for a single working vacation. In the working vacation, a customer is served at a lower speed, and if there are customers in the queue at the instant of a service completion, the server is resumed to a regular busy period with probability p   (i.e., the vacation is interrupted) or continues the vacation with probability 1-p1-p. Using the matrix analytic method, we obtain the distribution for the stationary queue length at departure epochs. The joint distribution for the stationary queue length and service status at the arbitrary epoch is also obtained by using supplementary variable technique. We also develop a variety of stationary performance measures for this system and give a conditional stochastic decomposition result. Finally, several numerical examples are presented.  相似文献   

12.
In this paper, a multiple server queue, in which each server takes a vacation after serving one customer is studied. The arrival process is Poisson, service times are exponentially distributed and the duration of a vacation follows a phase distribution of order 2. Servers returning from vacation immediately take another vacation if no customers are waiting. A matrix geometric method is used to find the steady state joint probability of number of customers in the system and busy servers, and the mean and the second moment of number of customers and mean waiting time for this model. This queuing model can be used for the analysis of different kinds of communication networks, such as multi-slotted networks, multiple token rings, multiple server polling systems and mobile communication systems.  相似文献   

13.
A discrete time Geo/Geo/1 queue with (mN)-policy is considered in this paper. There are three operation periods being considered: high speed, low speed service periods and idle periods. With double thresholds policy, the server begins to take a working vacation when the number of customers is below m after a service and there is one customer in the system at least. What’s more, if the system becomes empty after a service, the server will take an ordinary vacation. Otherwise, high speed service continues if the number of customers still exceeds m after a service. At the vacation completion instant, servers resume their service if the quantity of customers exceeds N. Vacations can also be interrupted when the system accumulate customers more than the prefixed threshold. Using the quasi birth-death process and matrix-geometric solution methods, we derive the stationary queue length distribution and some system characteristics of interest. Based on these, we apply the queue to a virtual channel switching system and present various numerical experiments for the system. Finally, numerical results are offered to illustrate the optimal (mN)-policy to minimize cost function and obtain practical consequence on the operation of double thresholds policy.  相似文献   

14.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

15.
Zhang  Zhe George  Tian  Naishuo 《Queueing Systems》2001,38(4):419-429
This paper treats the discrete time Geometric/G/1 system with vacations. In this system, after serving all customers in the system, the server will take a random maximum number of vacations before returning to the service mode. The stochastic decomposition property of steady-state queue length and waiting time has been proven. The busy period, vacation mode period, and service mode period distributions are also derived. Several common vacation policies are special cases of the vacation policy presented in this study.  相似文献   

16.
《Applied Mathematical Modelling》2014,38(21-22):5113-5125
This paper deals with the (p, N)-policy M/G/1 queue with an unreliable server and single vacation. Immediately after all of the customers in the system are served, the server takes single vacation. As soon as N customers are accumulated in the queue, the server is activated for services with probability p or deactivated with probability (1  p). When the server returns from vacation and the system size exceeds N, the server begins serving the waiting customers. If the number of customers waiting in the queue is less than N when the server returns from vacation, he waits in the system until the system size reaches or exceeds N. It is assumed that the server is subject to break down according to a Poisson process and the repair time obeys a general distribution. This paper derived the system size distribution for the system described above at a stationary point of time. Various system characteristics were also developed. We then constructed a total expected cost function per unit time and applied the Tabu search method to find the minimum cost. Some numerical results are also given for illustrative purposes.  相似文献   

17.
In this paper, we consider GI/M/c queues with two classes of vacation mechanisms: Station vacation and server vacation. In the first one, all the servers take vacation simultaneously whenever the system becomes empty, and they also return to the system at the same time, i.e., station vacation is a group vacation for all servers. This phenomenon occurs in practice, for example, when the system consists of a set of machines monitored by a single operator, or the system consists of inseparable interconnected parallel machines. In such situations the whole station has to be treated as a single entity for vacation when the system is utilized for a secondary task. For the second class of vacation mechanisms, each server takes its own vacation whenever it complexes a service and finds no customers waiting in the queue, which occurs, for instance in the post office, when each server is a relatively independent working unit, and can itself be used for other purposes. For both models, we derive steady state probabilities that have matrix geometric form, and develop computational algorithms to obtain numerical solutions. We also analyze and make comparisons of these models based on numerical observations.  相似文献   

18.
This paper deals with the steady state behaviour of an Mx/G/1 queue with general retrial time and Bernoulli vacation schedule for an unreliable server, which consists of a breakdown period and delay period. Here we assume that customers arrive according to compound Poisson processes. While the server is working with primary customers, it may breakdown at any instant and server will be down for short interval of time. Further concept of the delay time is also introduced. The primary customer finding the server busy, down or vacation are queued in the orbit in accordance with FCFS (first come first served) retrial policy. After the completion of a service, the server either goes for a vacation of random length with probability p or may continue to serve for the next customer, if any with probability (1 − p). We carry out an extensive analysis of this model. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

19.
In this paper, we analyse a queueing system where the server may take a vacation. The customers arrive at the service facility according to a Poisson process, and are served if the server is available (not on vacation). We consider two models: when the server vacation cycle is independent of and dependent on the number of customers in the system. The infinitesimal generators of the underlying Markov processes have a block tri-diagonal structure, and we provide a matrix geometric solution. When the vacation cycle is independent of the customer queue length, we present a simple load-dependent approximation that is fairly accurate.  相似文献   

20.
Abstract

This article concerns a Geo/G/1/∞ queueing system under multiple vacations and setup-closedown times. Specifically, the operation of the system is as follows. After each departure leaving an empty system, the server is deactivated during a closedown time. At the end of each closedown time, if at least a customer is present in the system, the server begins the service of the customers (is reactivated) without setup; however, if the system is completely empty, the server takes a vacation. At the end of each vacation, if there is at least a customer in the system, the server requires a startup time (is reactivated) before beginning the service of the customers; nevertheless, if there are not customers waiting in the system, the server takes another vacation. By applying the supplementary variable technique, the joint generating function of the server state and the system length together with the main performance measures are derived. We also study the length of the different busy periods of the server. The stationary distributions of the time spent waiting in the queue and in the system under the FCFS discipline are analysed too. Finally, a cost model with some numerical results is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号