首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider the need to currently locate p facilities but it is possible that up to q additional facilities will have to be located in the future. There are known probabilities that 0 ? r ? q facilities will need to be located. The p-median problem under uncertainty is to find the location of p facilities such that the expected value of the objective function in the future is minimized. The problem is formulated on a graph, properties of it are proven, an integer programming formulation is constructed, and heuristic algorithms are suggested for its solution. The heuristic algorithms are modified to reduce the run time by about two orders of magnitude with minimal effect on the quality of the solution. Optimal solutions for many problems are found effectively by CPLEX. Computational results using the heuristic algorithms are presented.  相似文献   

2.
Facility-location problems have several applications, such as telecommunications, industrial transportation and distribution. One of the most well-known facility-location problems is the p-median problem. This work addresses an application of the capacitated p-median problem to a real-world problem. We propose a genetic algorithm (GA) to solve the capacitated p-median problem. The proposed GA uses not only conventional genetic operators, but also a new heuristic “hypermutation” operator suggested in this work. The proposed GA is compared with a tabu search algorithm.  相似文献   

3.
In this paper we present a heuristic procedure designed expressly for solving a large layout problem in a multi-story setting, where the objective is to minimize total fixed and interaction costs. This is achieved by decomposing the original facilities layout problem into several similar but smaller problems, thus enabling solution of problems with as many as 150 facilities in reasonable time. Some of the novel features of the procedure described are the use of a heuristic K-median subroutine to obtain groupings of facilities, and a simple and fast exchange-improvement method. Computational results for randomly generated problems compare the effectiveness of this method with the space planning heuristic method of Liggett and Mitchell.  相似文献   

4.
We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median and p-center. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega (1996) for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen and Mladenović (1997) for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them.  相似文献   

5.
In this paper, the p-median and p-centre problems are generalized by considering the possibility that one or more of the facilities may become inactive. The unreliable p-median problem is defined by introducing the probability that a facility becomes inactive. The (p, q)-centre problem is defined when p facilities need to be located but up to q of them may become unavailable at the same time. An heuristic procedure is presented for each problem. A rigorous procedure is discussed for the (p, q)-centre problem. Computational results are presented.  相似文献   

6.
The Euclidean p-median problem is concerned with the decision of the locations for public service centres. Existing methods for the planar Euclidean p-median problems are capable of efficiently solving problems of relatively small scale. This paper proposes two new heuristic algorithms aiming at problems of large scale. Firstly, to reflect the different degrees of proximity to optimality, a new kind of local optimum called level-m optimum is defined. For a level-m optimum of a p-median problem, where m<p, each of its subsets containing m of the p partitions is a global optimum of the corresponding m-median subproblem. Starting from a conventional local optimum, the first new algorithm efficiently improves it to a level-2 optimum by applying an existing exact algorithm for solving the 2-median problem. The second new algorithm further improves it to a level-3 optimum by applying a new exact algorithm for solving the 3-median problem. Comparison based on experimental results confirms that the proposed algorithms are superior to the existing heuristics, especially in terms of solution quality.  相似文献   

7.
The aim of this paper is to solve p-median problems with an additional coverage constraint. These problems arise in location applications, when the trade-off between distance and coverage is being calculated. Three kinds of heuristic algorithms are developed. First, local search procedures are designed both for constructing and improving feasible solutions. Second, a multistart GRASP heuristic is developed, based on the previous local search methods. Third, by employing Lagrangean relaxation methods, a very efficient Lagrangean heuristic algorithm is designed, which extends the well known algorithm of Handler and Zang, for constrained shortest path problems, to constrained p-median problems. Finally, a comparison of the computational efficiency of the developed methods is made between a variety of problems of different sizes.  相似文献   

8.
In this paper, we propose a novel algorithm for solving the classical P-median problem. The essential aim is to identify the optimal extended Lagrangian multipliers corresponding to the optimal solution of the underlying problem. For this, we first explore the structure of the data matrix in P-median problem to recast it as another equivalent global optimization problem over the space of the extended Lagrangian multipliers. Then we present a stochastic search algorithm to find the extended Lagrangian multipliers corresponding to the optimal solution of the original P-median problem. Numerical experiments illustrate that the proposed algorithm can effectively find a global optimal or very good suboptimal solution to the underlying P-median problem, especially for the computationally challenging subclass of P-median problems with a large gap between the optimal solution of the original problem and that of its Lagrangian relaxation.  相似文献   

9.
An algorithm for solving a special capacitated multicommodity p-median transportation problem (CMPMTP), which arises in container terminal management, is presented. There are some algorithms to solve similar kinds of problems. The formulation here is different from the existing modelling of the p-median or some related location problems. We extend the existing work by applying a Lagrangean relaxation to the CMPMTP. In order to obtain a satisfactory solution, a heuristic branch-and-bound algorithm is designed to search for a better solution, if one is possible. A comparison is also made with different algorithms.  相似文献   

10.
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility.  and  re-estate three arguments on why this assumption might be incorrect, and they introduce the gravity p-median model to relax the assumption. We favor the gravity p-median model, but we note that in an applied setting, the three arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.  相似文献   

11.
The backup 2-median problem is a location problem to locate two facilities at vertices with the minimum expected cost where each facility may fail with a given probability. Once a facility fails, the other one takes full responsibility for the services. Here we assume that the facilities do not fail simultaneously. In this paper, we consider the backup 2-median problem on block graphs where any two edges in one block have the same length and the lengths of edges on different blocks may be different. By constructing a tree-shaped skeleton of a block graph, we devise an O(n log n q- m)-time algorithm to solve this problem where n and m are the number of vertices and edges, respectively, in the given block graph.  相似文献   

12.
A firm wants to locate several multi-server facilities in a region where there is already a competitor operating. We propose a model for locating these facilities in such a way as to maximize market capture by the entering firm, when customers choose the facilities they patronize, by the travel time to the facility and the waiting time at the facility. Each customer can obtain the service or goods from several (rather than only one) facilities, according to a probabilistic distribution. We show that in these conditions, there is demand equilibrium, and we design an ad hoc heuristic to solve the problem, since finding the solution to the model involves finding the demand equilibrium given by a nonlinear equation. We show that by using our heuristic, the locations are better than those obtained by utilizing several other methods, including MAXCAP, p-median and location on the nodes with the largest demand.  相似文献   

13.
An instance of a p-median problem gives n demand points. The objective is to locate p supply points in order to minimize the total distance of the demand points to their nearest supply point. p-Median is polynomially solvable in one dimension but NP-hard in two or more dimensions, when either the Euclidean or the rectilinear distance measure is used. In this paper, we treat the p-median problem under a new distance measure, the directional rectilinear distance, which requires the assigned supply point for a given demand point to lie above and to the right of it. In a previous work, we showed that the directional p-median problem is polynomially solvable in one dimension; we give here an improved solution through reformulating the problem as a special case of the constrained shortest path problem. We have previously proven that the problem is NP-complete in two or more dimensions; we present here an efficient heuristic to solve it. Compared to the robust Teitz and Bart heuristic, our heuristic enjoys substantial speedup while sacrificing little in terms of solution quality, making it an ideal choice for real-world applications with thousands of demand points.  相似文献   

14.
We review four facility location problems which are motivated by urban service applications and which can be thought of as extensions of the classic Q-median problem on networks. In problems P1 and P2 it is assumed that travel times on network links change over time in a probabilistic way. In P2 it is further assumed that the facilities (servers) are movable so that they can be relocated in response to new network travel times. Problems P3 and P4 examine the Q-median problem for the case when the service capacity of the facilities is finite and, consequently, some or all of the facilities can be unavailable part of the time. In P3 the facilities have stationary home locations but in P4 they have movable locations and thus can be relocated to compensate for the unavailability of the busy facilities. We summarize our main results to date on these problems.  相似文献   

15.
A Hybrid Heuristic for the p-Median Problem   总被引:1,自引:0,他引:1  
Given n customers and a set F of m potential facilities, the p-median problem consists in finding a subset of F with p facilities such that the cost of serving all customers is minimized. This is a well-known NP-complete problem with important applications in location science and classification (clustering). We present a multistart hybrid heuristic that combines elements of several traditional metaheuristics to find near-optimal solutions to this problem. Empirical results on instances from the literature attest the robustness of the algorithm, which performs at least as well as other methods, and often better in terms of both running time and solution quality. In all cases the solutions obtained by our method were within 0.1% of the best known upper bounds.  相似文献   

16.
In this paper we propose a new model for the p-median problem. In the standard p-median problem it is assumed that each demand point is served by the closest facility. In many situations (for example, when demand points are communities of customers and each customer makes his own selection of the facility) demand is divided among the facilities. Each customer selects a facility which is not necessarily the closest one. In the gravity p-median problem it is assumed that customers divide their patronage among the facilities with the probability that a customer patronizes a facility being proportional to the attractiveness of that facility and to a decreasing utility function of the distance to the facility.  相似文献   

17.
In a previous paper we presented a tree search algorithm for the p-median problem, the problem of locating p facilities (medians) on a network, which was based upon La grangean relaxation and subgradient optimisation. That algorithm solved (optimally) problems with an arbitrary number of medians and having up to 200 vertices.In this note we show that it is possible to enhance that algorithm to solve (optimally) problems having up to 900 vertices using the Cray-1S computer.  相似文献   

18.
The bilevel p-median problem for the planning and protection of critical facilities involves a static Stackelberg game between a system planner (defender) and a potential attacker. The system planner determines firstly where to open p critical service facilities, and secondly which of them to protect with a limited protection budget. Following this twofold action, the attacker decides which facilities to interdict simultaneously, where the maximum number of interdictions is fixed. Partial protection or interdiction of a facility is not possible. Both the defender’s and the attacker’s actions have deterministic outcome; i.e., once protected, a facility becomes completely immune to interdiction, and an attack on an unprotected facility destroys it beyond repair. Moreover, the attacker has perfect information about the location and protection status of facilities; hence he would never attack a protected facility. We formulate a bilevel integer program (BIP) for this problem, in which the defender takes on the leader’s role and the attacker acts as the follower. We propose and compare three different methods to solve the BIP. The first method is an optimal exhaustive search algorithm with exponential time complexity. The second one is a two-phase tabu search heuristic developed to overcome the first method’s impracticality on large-sized problem instances. Finally, the third one is a sequential solution method in which the defender’s location and protection decisions are separated. The efficiency of these three methods is extensively tested on 75 randomly generated instances each with two budget levels. The results show that protection budget plays a significant role in maintaining the service accessibility of critical facilities in the worst-case interdiction scenario.  相似文献   

19.
A general framework for modeling median type locational decisions, where (i) travel costs and demands may be stochastic, (ii) multiple services or commodities need to be considered, and/or (iii) multiple median type objectives might exist, is presented—using the concept of “multidimensional networks”. The classical m-median problem, the stochastic m-median problem, the multicommodity m-median problem and and multiobjective m-median problem are defined within this framework.By an appropriate transformation of variables, the multidimensional m-median problem simplifies to the classical m-median problem but with a K-fold increase in the number of nodes, where K is the number of dimensions of the network. A nested dual approach to solve the resulting classical m-median problem, that uses Erlenkotter's facility location scheme as a subroutine, is presented. Computational results indicate that the procedure may perhaps be the best available one to solve the m-median problem exactly.  相似文献   

20.
The online median problem consists in finding a sequence of incremental solutions of the k-median problem with k increasing. A particular case of the problem is considered: the clients and facilities are located on the real line. The best algorithm available for the one-dimensional case has competitive ratio 8. We give an improved 5.83-competitive algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号