首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem considered is that of evaluating numerically an integral of the form where the integrand has one or more simple poles in the interval (O,p). Modified forms of the trapezoidal and mid-ordinate rules, taking account of the singularities, are obtained; it is then shown that the resulting approximations can be extrapolated by Romberg's method. Further modifications to deal with the case when the integrand has an integrable branch singularity at one or both ends of the interval of integration are also briefly discussed.  相似文献   

2.
A new shifted Chebyshev operational matrix (SCOM) of fractional integration of arbitrary order is introduced and applied together with spectral tau method for solving linear fractional differential equations (FDEs). The fractional integration is described in the Riemann–Liouville sense. The numerical approach is based on the shifted Chebyshev tau method. The main characteristic behind the approach using this technique is that only a small number of shifted Chebyshev polynomials is needed to obtain a satisfactory result. Illustrative examples reveal that the present method is very effective and convenient for linear multi-term FDEs.  相似文献   

3.
We introduce a hybrid Gegenbauer (ultraspherical) integration method (HGIM) for solving boundary value problems (BVPs), integral and integro-differential equations. The proposed approach recasts the original problems into their integral formulations, which are then discretized into linear systems of algebraic equations using Gegenbauer integration matrices (GIMs). The resulting linear systems are well-conditioned and can be easily solved using standard linear system solvers. A study on the error bounds of the proposed method is presented, and the spectral convergence is proven for two-point BVPs (TPBVPs). Comparisons with other competitive methods in the recent literature are included. The proposed method results in an efficient algorithm, and spectral accuracy is verified using eight test examples addressing the aforementioned classes of problems. The proposed method can be applied on a broad range of mathematical problems while producing highly accurate results. The developed numerical scheme provides a viable alternative to other solution methods when high-order approximations are required using only a relatively small number of solution nodes.  相似文献   

4.
The numerical evaluation of Bessel function integrals may be difficult when the Bessel function is rapidly oscillating in the interval of integration. In the method presented here, the smooth factor of the integrand is replaced by a truncated Chebyshev series approximation and the resulting integral is computed exactly. The numerical aspects of this exact integration are discussed.  相似文献   

5.
6.
A Chebyshev interval method for nonlinear dynamic systems under uncertainty   总被引:2,自引:0,他引:2  
This paper proposes a new interval analysis method for the dynamic response of nonlinear systems with uncertain-but-bounded parameters using Chebyshev polynomial series. Interval model can be used to describe nonlinear dynamic systems under uncertainty with low-order Taylor series expansions. However, the Taylor series-based interval method can only suit problems with small uncertain levels. To account for larger uncertain levels, this study introduces Chebyshev series expansions into interval model to develop a new uncertain method for dynamic nonlinear systems. In contrast to the Taylor series, the Chebyshev series can offer a higher numerical accuracy in the approximation of solutions. The Chebyshev inclusion function is developed to control the overestimation in interval computations, based on the truncated Chevbyshev series expansion. The Mehler integral is used to calculate the coefficients of Chebyshev polynomials. With the proposed Chebyshev approximation, the set of ordinary differential equations (ODEs) with interval parameters can be transformed to a new set of ODEs with deterministic parameters, to which many numerical solvers for ODEs can be directly applied. Two numerical examples are applied to demonstrate the effectiveness of the proposed method, in particular its ability to effectively control the overestimation as a non-intrusive method.  相似文献   

7.
Let an analytic or a piecewise analytic function on a compact interval be given. We present algorithms that produce enclosures for the integral or the function itself. Under certain conditions on the representation of the function, this is done with the minimal order of numbers of operations. The integration algorithm is implemented and numerical comparisons to non-validating integration software are presented.  相似文献   

8.
An approximate method to solve the Cauchy problem for normal and canonical systems of second-order ordinary differential equations is proposed. The method is based on the representation of a solution and its derivative at each integration step in the form of partial sums of series in shifted Chebyshev polynomials of the first kind. A Markov quadrature formula is used to derive the equations for the approximate values of Chebyshev coefficients in the right-hand sides of systems. Some sufficient convergence conditions are obtained for the iterative method solving these equations. Several error estimates for the approximate Chebyshev coefficients and for the solution are given with respect to the integration step size.  相似文献   

9.
Algorithms for the integration and derivation of Chebyshev series   总被引:1,自引:0,他引:1  
General formulas for the mth integral and derivative of a Chebyshev polynomial of the first or second kind are presented. The result is expressed as a finite series of the same kind of Chebyshev polynomials. These formulas permit to accelerate the determination of such integrals or derivatives. Besides, it is presented formulas for the mth integral and derivative of finite Chebyshev series and a numerical algorithm for the direct evaluation of the mth derivative of such a series.  相似文献   

10.
<正>In calculus,two famous problems are well known.The one problem of finding the tangent line led us to the derivative.The other problem of finding area led us to find the definite integral.In this paper,we will learn how to approximation integration by using rectangles.1.What does the Riemann sum mean?A given function y=f(x)is continuous on the interval[a,b].We divide the interval  相似文献   

11.
The Galerkin–Chebyshev matrix is the coefficient matrix for the Galerkin method (or the degenerate kernel approximation method) using Chebyshev polynomials. Each entry of the matrix is defined by a double integral. For convolution kernels K(x-y) on finite intervals, this paper obtains a general recursion relation connecting the matrix entries. This relation provides a fast generation of the Galerkin–Chebyshev matrix by reducing the construction of a matrix of order N from N 2+O(N) double integral evaluations to 3N+O(1) evaluations. For the special cases (a) K(x-y)=|x-y|α-1(-ln|x-y|) p and (b) K(x-y)=K ν(σ|x-y|) (modified Bessel functions), the number of double integral evaluations to generate a Galerkin–Chebyshev matrix of arbitrary order can be further reduced to 2p+2 double integral evaluations in case (a) and to 8 double integral evaluations in case (b). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
13.
Summary A new method for the numerical integration of very high dimensional functions is introduced and implemented based on the Metropolis' Monte Carlo algorithm. The logarithm of the high dimensional integral is reduced to a 1-dimensional integration of a certain statistical function with respect to a scale parameter over the range of the unit interval. The improvement in accuracy is found to be substantial comparing to the conventional crude Monte Carlo integration. Several numerical demonstrations are made, and variability of the estimates are shown.  相似文献   

14.
The numerical evaluation of Hadamard finite-part integrals   总被引:2,自引:0,他引:2  
Summary A quadrature rule is described for the numerical evaluation of Hadamard finite-part integrals with a double pole singularity within the range of integration. The rule is based upon the observation that such an integral is the derivative of a Cauchy principal value integral.  相似文献   

15.
In this paper, we extend our previous work (M.-C. Lai, A simple compact fourth-order Poisson solver on polar geometry, J. Comput. Phys. 182 (2002) 337–345) to 3D cases. More precisely, we present a spectral/finite difference scheme for Poisson equation in cylindrical coordinates. The scheme relies on the truncated Fourier series expansion, where the partial differential equations of Fourier coefficients are solved by a formally fourth-order accurate compact difference discretization. Here the formal fourth-order accuracy means that the scheme is exactly fourth-order accurate while the poles are excluded and is third-order accurate otherwise. Despite the degradation of one order of accuracy due to the presence of poles, the scheme handles the poles naturally; thus, no pole condition is needed. The resulting linear system is then solved by the Bi-CGSTAB method with the preconditioner arising from the second-order discretization which shows the scalability with the problem size.  相似文献   

16.
分别利用定积分的定义、Cauchy中值定理、积分变限函数、参数法以及二重积分等证明积分不等式∫01f2(x)dx≥∫01f(x)dx2,其中f(x)在闭区间[0,1]上连续.同时归纳出证明积分不等式的几种典型方法.  相似文献   

17.
In this paper, a new and effective direct method to determine the numerical solution of pantograph equation, pantograph equation with neutral term and Multiple-delay Volterra integral equation with large domain is proposed. The pantograph equation is a delay differential equation which arises in quite different fields of pure and applied mathematics, such as number theory, dynamical systems, probability, mechanics and electrodynamics. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration, product and delay of the Chebyshev cardinal functions are presented. A general procedure for forming these matrices is given. These matrices play an important role in modelling of problems. By using these operational matrices together, a pantograph equation can be transformed to a system of algebraic equations. An efficient error estimation for the Chebyshev cardinal method is also introduced. Some examples are given to demonstrate the validity and applicability of the method and a comparison is made with existing results.  相似文献   

18.
A finite integration method is proposed in this paper to deal with partial differential equations in which the finite integration matrices of the first order are constructed by using both standard integral algorithm and radial basis functions interpolation respectively. These matrices of first order can directly be used to obtain finite integration matrices of higher order. Combining with the Laplace transform technique, the finite integration method is extended to solve time dependent partial differential equations. The accuracy of both the finite integration method and finite difference method are demonstrated with several examples. It has been observed that the finite integration method using either radial basis function or simple linear approximation gives a much higher degree of accuracy than the traditional finite difference method.  相似文献   

19.
The error term related to a Romberg type extrapolation scheme based on the use of an arbitrary quadrature formula is derived. A complete discussion, utilizing the known properties of the Bernoulli polynomials and their related periodic functions, is presented in the case of a repeated halving of the integration interval. The general expression for the error term is derived in the case of an arbitrary subdivision of the integration interval.Work performed while the author was working as staff member at CERN, Geneva, Switzerland.  相似文献   

20.
A general formulation is constructed for Jacobi operational matrices of integration, product, and delay on an arbitrary interval. The main purpose of this study is to improve Jacobi operational matrices for solving delay or advanced integro–differential equations. Some theorems are established and utilized to reduce the computational costs. All algorithms can be used for both linear and nonlinear Fredholm and Volterra integro-differential equations with delay. An error estimator is introduced to approximate the absolute error when the exact solution of a given problem is not available. The error of the proposed method is less compared to other common methods such as the Taylor collocation, Chebyshev collocation, hybrid Euler–Taylor matrix, and Boubaker collocation methods. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号