首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microfiltration of protein solutions at thin film composite membranes   总被引:1,自引:0,他引:1  
An experimental study of the interaction of the enzyme yeast alcohol dehydrogenase (YADH) with polysulfone thin film composite microfiltration membranes (Dow-Danmark) has been carried out. It was found that the membranes adsorbed only 3/4 of a monolayer of the enzyme under the conditions studied. Even so, under filtration conditions, the membrane permeation rate decreased continuously with time. This decrease in permeation rate was due neither to concentration polarisation nor to protein adsorption alone. However, it could be quantified using the standard blocking filtration law, which describes a decrease in pore volume due to deposition of protein in the interior structure of the membrane. Reversal of the membrane, so that the supporting matrix faced the feed solution, gave more stable permeation rates. Implications for the microfiltration of industrial fermentation broths are discussed.  相似文献   

2.
In the present paper a new model for the transport through membranes, introduced previously by Hosur, is considered. In this model, the membrane is assimilated to a potential barrier, and the material flow through the membrane is determined from the transmission coefficient of the barrier, assuming the existence of an energy difference among the molecules placed at both sides of the membrane. An equation for the transport, in the case of small energy differences, is obtained, which is particularized to the cases that the energy difference is caused by a temperature gradient, a concentration gradient, and both gradients acting together. In all cases, under certain limitations, formally identical equations to those of the thermodynamics of irreversible processes are obtained.  相似文献   

3.
A composite RO membrane with high salt rejection and high flux for the desalination of seawater was prepared by treating a porous polysulfone (PS) support sequentially with a di-amine and then with a polyfunctional acid chloride, thereby forming a thin film of polyamide (PA) on the PS support. In order to establish conditions for the development of suitable thin film composite (TFC) membranes on a coating machine, various parametric studies were carried out which included varying the concentration of reactants, reaction time, curing temperature and curing time for thin film formation by the interfacial polymerization technique. By suitable combination of these factors,a desired thin film of polyamide with improved performance for seawater desalination could be obtained. Moreover, the product water fluxes were considerably enhanced by post-treatment of the TFC membrane. Continuous sheets of TFCs were developed on the mechanical coating unit and tested for RO performance in a plate-and-frame configuration with synthetic seawater. The performance of these composite membranes was also determined for the separation of organics and compared with cellulose acetate (CA) membranes.  相似文献   

4.
This article demonstrates the successful fabrication of thin‐film‐composite (TFC) membranes containing well‐defined soft‐hard‐soft triblock copolymers. Based on “hard” polyimide (PI) and “soft” polydimethylsiloxane (PDMS), these triblock copolymers (PDMS‐b‐PI‐b‐PDMS), were prepared via condensation polymerization, and end‐group allylic functionalization to prepare the polyimide component and subsequent “click” coupling with the soft azido functionalized PDMS component. The selective layer consisted of pure PDMS‐b‐PI‐b‐PDMS copolymers which were cast onto a precast crosslinked‐PDMS gutter layer which in turn was cast onto a porous polyacrylonitrile coated substrate. The TFC membranes' gas transport properties, primarily for the separation of carbon dioxide (CO2) from nitrogen (N2), were determined at 35 °C and at a feed pressure of 2 atm. The TFC membranes showed improvements in gas permselectivity with increasing PDMS weight fraction. These results demonstrate the ability for glassy, hard polymer components to be coated onto otherwise incompatible surfaces of highly permeable soft TFC substrates through covalent coupling. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3372–3382  相似文献   

5.
The membrane aromatic recovery system (MARS) is a new membrane technology which recovers aromatic acids and bases. The first industrial installation has been operating at a Degussa site in the UK recovering cresols since 2002. The state of the art MARS technology employs a tubular silicone rubber membrane. However, this places some limitations on the process due to relatively low mass transfer rates and limited chemical resistance.In this paper, flat sheet composite membranes were investigated for application to the MARS process. In particular for recovery of compounds, such as 1,2-benzisothiazolin-3-one (BIT) which show low mass transfer rates through the current membrane. These composite membranes are comprised of a thin nonporous PDMS selective layer coated on a microporous support layer cast from polyacrylonitrile, polyvinylidene fluoride, polyetherimide or polyphenylenesulphone. The membranes have been characterised using SEM and gas permeation. The mass transfer of BIT through the composite membranes with no chemical reaction enhancement was an order of magnitude higher than through tubular silicone rubber membranes (10−7 m s−1 versus 10−8 m s−1). With chemical reaction enhancement, the mass transfer increased by another order of magnitude to 1.6 × 10−6 m s−1 for BIT through a PVDF supported composite membrane. Mass transfer through the composite membrane was described well using analysis based on the resistance in series theory with chemical reaction. However, when a high osmotic pressure was applied across the membrane (molarity  3 M), significant water transport occurred across the membrane.  相似文献   

6.
A novel type of composite thin film consisting of gold nanoparticles (AuNPs) and polymide (PI) was fabricated through layer-by-layer (LBL) assembly. To fabricate such films, bare AuNPs and a poly (amic acid) bearing pendant amine groups, namely, amino poly (amic acid) or APAA, were synthesized and assembled in an LBL fashion. Without any organic encapsulation layer on their surface, AuNPs were bound directly to APAA chains at the amine sites; X-ray photoelectron spectroscopy study suggested that the binding was based on a combined effect of metal-ligand coordination and electrostatic interaction, with the former dominating over the latter. An approximately linear growth of the film started from the second layer of AuNP as revealed by the UV-vis spectroscopy, and the degree of particle aggregation was higher in the first AuNP layer than in the subsequent layers due to the differences in the density of binding sites. The resultant assembly was heated to imidize the APAA, thereby creating a robust composite structure.  相似文献   

7.
Interfacial polymerization (IP) is a powerful technique for fabrication of thin film composite (TFC) membranes. The polymers used most often as support are polysulfone (PS) or polyethersulfone (PES). These supports have limited stability in organic solvents. In this work, microporous polypropylene (PP) flat film and hollow fiber membranes were used as a support to fabricate TFC membranes for nanofiltration by the IP technique. Porous polypropylene membranes can provide substantial chemical, pH, and solvent resistance and are therefore suitable as supports for fabricating TFC membranes functioning as solvent-stable nanofiltration membranes. The surface and the pore interior of polypropylene flat sheet and hollow fiber membranes were hydrophilized first by pre-wetting with acetone followed by oxidation with chromic acid solution. A standard procedure to successfully coat the hydrophilized flat film and hollow fiber membranes was developed next. The monomeric system chosen for IP was poly(ethyleneimine) and isophthaloyl dichloride. The TFC hollow fiber membranes were characterized by nanofiltration of safranin O (MW 351) and brilliant blue R (MW 826) dyes in methanol. Rejection values of 88% and 43% were achieved for brilliant blue R and safranin O, respectively at a transmembrane pressure of 413 kPa in the TFC hollow fiber membranes. Pressure dependences of the solvent flux and solute rejection of the TFC membranes were studied using the modified flat sheet membranes up to a pressure of 965–1241 kPa. Solvent flux increased linearly with an increase in the transmembrane pressure. Solute rejection also increased with an increase in the transmembrane pressure. All modified membranes were also characterized using scanning electron microscopy. Extended-term solvent stability of the fabricated membranes was studied in toluene; the membranes demonstrated substantial solvent stability in toluene.  相似文献   

8.
The results presented in this work deal with the prime application of activated composite membranes (ACMs) for the transport of Hg(II) ions in a continuous extraction–re-extraction system using di-(2-ethylhexyl)dithiophosphoric acid (DTPA) as carrier. The effects of variables such as the pH, the nature of the acid and the concentration of the casting solutions on the transport of Hg(II) are also investigated. When the ACM was prepared with a 0.5 M DTPA solution and when the feed solution contained 2.5×10–4 M Hg(II) in 0.1 M HCl, the amount of mercury extracted was greater than 76%. The re-extracted mercury was subsequently recovered by means of a stripping phase comprising 0.3 M thiourea solution in 2 M H2SO4, yielding 54% of the initial amount of mercury after transport had taken place for 180 min.  相似文献   

9.
The Space-Charge model is modified to better analyze the steady-state electrohydrodynamic behavior of aqueous monovalent electrolytes in charged microporous membranes. The effects of changes in solvent dielectric constant near the wall, ion hydration effects, finite ion sizes, and charge regulating surface effects, are incorporated into the governing electrohydrodynamic equations (i.e., Navier-Stokes (NSE), Nernst-Planck (NPE), and Poisson-Boltzmann (PBE) equations). Their effect on streaming potential, pore conductivity, excess conductivity, and maximum energy conversion efficiency for electro-osmosis is illustrated. It is shown that the dielectric saturation and ion hydration effects cause significant changes in the electric potential field and ion concentration inside the capillary tubes. Quantitative comparisons of model results with measured electrokinetic data reveal better agreement when compared with the existing model.  相似文献   

10.
The authors developed a rigorous framework to model nanofiltration (NF) membrane selectivity at high feed water recoveries and verify it experimentally. The phenomenological model and the Donnan steric partitioning pore model (DSPM) were incorporated into a differential element approach for predicting removal of a variety of solutes from single salt solutions and natural water by NF membranes up to 90% feed water recovery in the temperature range 5-41 degrees C. In this approach, the entire membrane ensemble was divided into numerous sub-elements analogous to real-world full-scale NF installations, where concentrate (or reject) from one element feeds into the next element. Fundamental membrane properties (average pore radius, surface charge density, and ratio of thickness to porosity) and the reflection coefficient and permeability coefficient were first independently obtained for each solute-membrane-temperature combination using separate low recovery experiments with negligible concentration polarization and later used as model inputs to calculate solute removal in a purely predictive fashion for 5-90% recovery. This modeling approach accurately predicted removals from single salt solutions of NaCl and MgSO(4) as well as natural organic matter, disinfection by-product precursors, and several ions from pretreated Lake Houston water in a wide range of operating conditions demonstrating its use to simulate NF permeate water quality under real-world conditions of high feed water recovery.  相似文献   

11.
This paper reports on the separation of ethanol—water mixtures using pervaporation for several membrane types. The FT30 and RC100 membranes pass ethanol selectively at feed concentrations similar to fermentation beers, and the FT30 membrane continues to pass ethanol selectively at higher ethanol feed concentrations. As the ethanol concentration in the feed increases, the ethanol selectivity of both the FT30 and RC100 membranes decreases; near the ethanol—water azeotrope, both membranes pass water selectively. At lower ethanol concentrations, the selectivity of the FT30 membrane increases as the feed temperature increases above 23°C.  相似文献   

12.
13.
A novel ion imprinted polymeric membrane (IIPM) for copper (Cu) ions transport was prepared by a ion imprinting technique via cross-linking of blended chitosan (CS)/polyvinyl alcohol (PVA) using glutaraldehyde (GA) as the cross-linker and Cu ions as the template. The obtained IIPM was characterised and evaluated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and permeation studies. Cavities of IIPM containing recognition sites for Cu ions were formed in the compact structure of the CS/PVA membrane which was prepared via the solution casting method. Under the optimum conditions, transport factor of the IIPM reached 2 when the permeation time was 18 h. Selective permeation of Cu ions versus nickel ions through the imprinted membrane was confirmed and a selectivity factor of 1.71 was obtained.  相似文献   

14.
Solid poly(acrylamide) (PAAm) composite membranes containing silver ions have been investigated for olefin/paraffin separation. The propylene permeance increased significantly for a solid PAAm/AgBF4 composite membrane with increasing loading amount of silver ions. Silver ions in solid PAAm form reversible complexes with propylene, resulting in the facilitated transport of propylene. The propylene selectivity of 100 over propane was obtained when the mole ratio of silver ions to acrylamide unit was 1. This high separation performance would be obtained predominantly because of the high loading of the propylene carrier, silver ions. PAAm-graft/AgBF4 composite membranes were prepared in order to improve the gas permeance. Introduction of PAAm grafts on a polysulfone microporous membrane surface was confirmed by FT-IR spectroscopy. The propylene permeance was increased through the PAAm-graft/AgBF4 membranes compared to that through of the PAAm/AgBF4 composite membranes, indicating the formation of ultra-thin top layer.  相似文献   

15.
16.
Gas permeability through fixed site carrier membranes (FSCMs) is predicted by the RC circuit models. If only one permeability value is available, other permeability values can readily be estimated as a function of applied pressure for a FSCM with given backward reaction rate and reaction equilibrium constants between carrier and penetrant, carrier concentration, and matrix permeability. The results were compared with experimental oxygen permeabilities through a PMMA membrane containing metallophorphyrin. The agreement between them was exceptional. In addition, the backward reaction rate constant between carrier and penetrant and the pressure fluctuation are found to be most sensitive in determining permeability in FSCMs according to the sensitivity analysis.  相似文献   

17.
18.
Polymeric gas separation membranes frequently undergo the phenomenon of aging, that is, performance parameters like permeability decrease with storage or usage time. Here, we report on a new approach of reducing aging by incorporation of functionalized multiwalled carbon nanotubes into a polymer of intrinsic microporosity. Free volume and permeability measurements clearly show a reduced aging with incorporation of the carbon nantubes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 213–217  相似文献   

19.
Hydrophobic gas separation membranes were prepared by a plasma polymerization process. Thin films of about 400–500 nm thickness deposited on porous Al2O3 substrates represent the composite membranes investigated. The permeation properties of the composites were examined by the pressure increase and an isobar method. Depending on the precursor composition and the plasma polymerization parameters, it is possible to prepare membranes with Knudsen-like or solution-diffusion controlled separation factors. Low plasma polymerization energy densities and a mixture of silico- and fluoro-organic precursors result in water/methane separation factors as low as αCH4H2O = 0.3 and high membrane permeabilities. Infrared analysis yields that the structure of the films is mainly determined by the silico-organic component. The fluoro-organic coprecursor causes a fluorination of methyl groups of the films as manifested by an infrared absorption band at 900-880 cm−1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号